Perfect Keyboard

Copyright © 2020 Pitrinec Software

Table of Contents

L Y Y P 9
Support, Feedback, Privacy, UnInstallcoioiiiii e 11
This Help Document Limitations.c.vvuiiiii s e e e 12
=T o o PP 13
(@00} 91 o | S PP 14
LIS A = o F PP 15
(@ T0] o oY= e I 1 =Tl o TR 17
€1 o=l = [= ol o T PP PRPTPPRN 20
Add Macro COMMAN. e e et e e e e n e e e 27
Macro CommaNd EdITOr.......ouiiiiiii 29
(O] o\ F= ol o TN = o] PP PP PP 30
RLEa0] o [<Ta I\ = ol o PPN 31
LI 1L 1= PP 34
(NG o Jo Y= o I I g e o = PP 35
@1 0] o= [e AU 36
WINAOWS SEIVICE 1euitiiii it e e e e s e e e e e e e e e e a e e e eneens 37
7 F= ol o Y el] o1 PP RPRPRPPPP 38
= Ta ol o o] o< < PP 40
R | T N F= T o PP 43
23 T PP 44
From Main window, Tray, Run command, elC..........ccooiiiiiiiiiii e 45
From Other Program ... e e e e e e e 46
=T o T e[{0 11] o 1 PSPPSR 47
= o o T o =TT PP TP 50
A F=To o N] L= I o R PP 51
CrEate/ O PEN/SAVE ...ttt 52
IMPOIT / EXP O e 53
Read-0Nly / REAA-WIITE .. .euiiii et e e e e e e e e e enn s 54
Lo 2= ol (0 o L PP PPRPPPPRP 55
e Ta | = 0 TS] e LT 56
(C1T T | PP TP PPN 57
KEYDOAIM. ..e. et et a e 60
SEAMTUP FlES. .. it 62
Y= oLH 1 PP 63
oo/ Q8 {0 g o {11 T [PPSR 64
= IV o I o 0] =T u T P 65
File Data SECUNITY ... vviieeiieiei ittt e e e e e e e e e et e e s e aa e e s ea s e e eneesnensannes 66
|15 = 1] =1 o o PP 67
Default INStallation FOIAEISvvnii i e e 68
SHENt INSEAIL. ... e e 69
INStall ON ShAred DIiVE. . .. e i e aaas 71
D= To R T o] o T PSPPSR 73
LOG FTl et e 74
HTML EXPOIt/PrINt MACIOS. .. .cuiieeieiiee ettt ettt e et e e e et e e e e e e e s e s e e e e ea e e anseen e eneesnaes 75
Generate Free Macro Player [EXE File......ovuniieiiiiiie e e 76
BUITA=IN HOTKEY S ... e e aa s 77
| [olo) g R @ XY= 1= 1V [y = Ta =R 79
APT's for External Programs/Scripts Interactioncocoviiiiiiiiiii e 80
L A o PP 81
Command Ling EXECULADIE..... ..o 83
WINAOWS SCHPE (WSCIIPE) covn et e e e e e e e e 85

(000] 00108 =16 SR R3] 01 =) 87

General Macro SYNTAX BaSIiCS ...uvuirieuiirieieieeie e ets e et e e s e s e e s e e s e e e e rneeneenns 88

Macro COMMANA SYNEAX...uuiuuiitiiii it e e e s e e s e e e e e s e eae e s e eneeanae 89

MACIO VAl AbIES. ... ettt e e e e e e 91

SYSEEM Vari@blESceieiiiii e 93
Expressions & Time CalCulationsovuiiiiiii 103
(@0 .41 12 1=1 0 o K3 PP 104
T I PP 105
TR [= (== PP 106
ClPDO@Id. ... e e 107
SAVE - < cpSaVve >() coo [PrO] e i 108
LOAD - < clplo@ad >() vv. [PrO] et e e e r s e e e e 109
PASTE - < clppastetext >() ... [Fre€] ...oeuiiiiiiiiiie e 110
CLEAR - < clpemply > ... [PrO] e it 111
COPY = < appUut >() «o. [PrO] e 112
COPY SELECTED - < clp_copyselected >() ... [Pro].cccccciieiiiiiiiiieiiieieeeee e 113
Replace text - < clp_replace_text >() ... [Pro]...ccocuiiiiiiiiiii e 114
(@00} 1010 0= 01K PP 115
Comment Line - < # > ... [Free] e 116
Comment BIock BEGIN { = < {# > ... [Pro] ceucviiiiiiii it e e e e 117
Comment BIOCK END } - < }# > ... [PrO] e 118
DAt B TIMIE e it 119
: DATE Insert or save to Variable - < date >() ... [Free]..ccoivviiiiiiiiii e, 120
: TIME Insert or save to Variable - < time >() ... [Free] ..ccreiriiiiiiiiiiee 123
Display / COMPULET SCIEENcvuieiiieie ettt e et e e e e e e e e e e e a e e e e e eaeeens 125
GET PIXEL - < display_getpixel >() ... [Pro]...ccoviiiiiiiiii e 126
CHANGE WALLPAPER - < display_changewallpaper >() ... [Pro]ccoccovvviiiiiiniiiinnnnnn. 128
Image FIND on SCREEN - < display_findimage >() ... [Pro]....cccccoviiiiiiiiiiiiiiiicieeieen, 129
Image CAPTURE from SCREEN - < display_captureimage >() ... [Pro].......ccccoevvnvennnnn. 132
NOTIFICATION - < NOtify >() oo [PrO] coceniiiniei e eae e 133
(o PP 134
Read cell value - < excel_cell_get >() ... [Pro] .ccoceuiiiiiiiii e 135
Write value to cell - < excel_cell_set >() ... [Pro] cooevieiiiiiii e 137
Open/Create workbook - < excel_wb_open >() ... [Pro]..ccccovviiiiiiiiiiiiece e, 138
Save - < excel_wb_save >() ... [Pro] .. 139
Get worksheets - < excel_wb_sheets >() ... [Pro]...ccccoiviviiiiiiiii e, 140
Activate worksheet - < excel_wb_activatesheet >() ... [Pro]ccccovviiiiiiiiiiiiniiinees 141
Close workbook - < excel_wb_close >() ... [Pro] cccuveeniiriiiiiiiiii e 142
EXEEINAl SOIIPES e 143
Embedded JAVA SCRIPT - < SCript_js > ... [Pro].ccciiiiiiii e 144
Embedded VB SCRIPT - < script_vbs > ... [Pro] ..c.ovuiiiiiiiiiiiiiii i e 145
Embedded BASIC SCRIPT - < script_basic > ... [Pro]....cccoocviiiiiiiiiiiinineea, 146
1L =TT 01U = L o] o PP 147
OPEN - < fileopen >() ... [FrE] . cu i e aaas 148
COPY - < filecopy >() ... [Fre@] . e 149
MOVE - < filemove >() ... [PrO] e 152
DELETE - < filedel >() ... [FrEE] . cu i e e e e e 154
CREATE - < filecreate >() ... [PrO] couuieuiiiiiiiiei e 156
LOAD TEXT - < data_load >() ... [PrO]..cuiieiiii e ae e 157
SAVE TEXT - < data_save >() ... [Pro] coeeuieeiiiiii e 158
INFO - < fIleiNfOo > () coo [PrO] cn i e e e e e 159
ENUMERATE - < file_enum >() ... [PrO] coeeuiieiiiiiiiii e e e e e 161
PRINT - < file_print >() ... [PrO] e 163
RENAME - < filerename >() ... [Pro] ... ciii e 164
ZIP - < zip_createfile >() ... [PrO] e i 165

UNZIP - < ZID_UNZIPFIE S () cer [P O] ettt ettt ettt e e e e e e e e e e nseenenens 167

NI WRITE - < ini_file_write >() ... [Pro] ccceuieeeiiiiiii et eae e 171
NI READ - < ini_file_read >() ... [PrO] e ceu i 173
ENCRYPT/DECRYPT - < file_encryption >() ... [Pro] ..cceuviiiiiiiiiiiiinci i 175
Parse Path - < file_path_parse >() ... [Pro] ..ccooiiiiiiiii e 177
Convert HTML to XML - < file_htmI2xml >() ... [Pro]..cccooeuiiiiiiiiiiii e, 178
CSV Load - < csv_file_load >() ... [Pro] ..o 179
CSV Get Record Fields - < csv_get_record >() ... [Pro].ccceeiiiiiiiiiiieii e 180
SHORTCUT - < file_shortcut >() ... [Pro]...cuoieiiiiiiii e 181
Folder Manipulationcuieei i e 182
OPEN - < diropen >() ... [PrO] . eu e 183
CREATE - < dircreate >() ... [Free].cuu it e 184
DELETE - < dirdel >() ... [FTrEE] wuieniiei ittt e e e e e ea e 185
COPY - <. dircopy >() «o. [PrO] coeniei i 187
MOVE - < dirmoVve >() ... [PrO] e e e 190
Recycle bin EMPTY - < rechinempty > ... [Pro]...cccooiiiiii e 193
RENAME - < dirrename >() ... [PrO] ..o 194
ENCRYPT/DECRYPT - < dir_encryption >() ... [Pro]..ccciiiiiiiiiiiiii e 196
(NS00 Y= o [198
Key EXTENDED - < extkey > ... [PrO] ..icuiieiiiiiiiiie e e e e a e 199
Insert NEW LINE - < neWline > ... [PrO]..cucciiiiiiiiii it 200
BLOCK - < keys_block > ... [ProO] ..cciiiiiiii e 201
UNBLOCK - < keys_unblock > ... [PrO] ..ccuuiiuiiiiiiiiii et 202
Key UP - < Key_UP >() vv. [FreE] curiiiiii it e e 203
Key DOWN - < key_down >() ... [Fre€]..uiuniiiiiiiiiiiie et e e e a e 204
ScrollLock ON - < ScrollLOCK_ON > ... [PrO].cuu it 205
ScrollLock OFF - < ScrollLoCk_OFF > ... [PrO]...cciieiieiiii e r e e e e eas 206
CapsLock ON - < CapsLOCk_ON > ... [Pro]...cciiiiiiiiiiie e 207
CapsLock OFF - < CapSLOCK_OFF > ... [PrO]....ciuuiiuiiiiiiieeieeiieiieeieerne e erne e e e s eneenns 208
NumLock ON - < NUMLOCK_ON > ... [Pro]...cciiiiiiiiiiiii e e e e e e 209
NumLock OFF - < NUMLOCK_OFF > ... [PrO]...ccuiiiiiiiiiiiiiii et 210
SEND KEYSTROKES - < keystrokes >() ... [PrO]....cueeiiiiiiiiiiii e e 211
1G5 PP 212
- < NUMPAAE > .. [FrEE et 213
- < NUMPAAS > o [FrEE e 214
- < NUMPAADL > ... [FrEE] e 215
- < NUMPAAT7 > o [FrBE it 216
- < NUMPAAS > ... [FrEe]. e 217
- < NUMPAAD > .. [FrEE e 218
- < NUMPAAX > o [FrEE i 219
= < NUMPAAH > o [FrEE] e 220
- < NUMPAA- > o [FrBE] i 221
- < NUMPAA. > oo [FIEE] it aa e 222
- < NUMPAA/ > oo [FrBE] e 223
Rl o R == R PP 224
Rl A I < 225
= K 3 > [Pt 226
Rl o R == PP 227
Sl o T I =T 228
= K FB > o [FrBE it 229
R o I o< 230
Rl < T I /= PP 231
e 1= | [T PP 232
Sl = T I < 233

- < F10 > IR L 234

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

AANANANANANANANANANANANANANANANNANNANANANANANANNANANANANNA

<
<
<
<
<
<
<
<

N /= 235
R 1 (== 236
G T I /=T 237
R I /== PP 238
0 T I /= 239
I /== 240
R I /==) PP 241
T 1 /= PP 242
ENEEE > o [FrEE] e i e 243
FLO > oo (IO ittt 244
O I /=T 245
B2 > o [FrEE] et 246
A I /= PP 247
2 N /== 248
F24 > L [FrE] it 249
3o o] | D o= 250
NUMIOCK > o [FrEE] e in it e e e s e e e e s e e e e e eaenns 251
]] N I /== P 252
Drowser_back > ... [FrEE] ..cuuiiiiii i 253
browser_forward > ... [Fre€]...cuu i 254
browser_refresh > ... [FrEE] .cuuii i e e aaas 255
browser_stop > ... [Fre] ... cuiiiii i 256
Lo u g R I /== PR 257
browser_Search > ... [FrEE] ... iu it e e aaas 258
browser_favorites > ... [FrEE] .. .iii it 259
Drowser_home > ... [FrEE] .. cu i e 260
VOIUME_MUEE > ... [FrEE] cn it e e r e a e ees 261
VOIUME_AOWN > ... [FrE€] e i 262
VOIUME_UD > oo [FFOE] i e e e e e eas 263
media_nexttrack > ... [Fre€]...cviiiii i 264
media_previrack > ... [FrEE ... i 265
Media_stop > ... [FrE€]..uu i 266
media_play_pause > ... [FrEE]...cciiiiiiiii i 267
1 N [== 268
F= T LYol T g = T I =T 269
launch_media_select > ... [Free]. ..o 270
[AUNCh_appPl > ... [FrE] . e 271
[@UNCh_apP2 > ... [FrEE] . i 272
Dreak > ... [FrEe] ..o 273
CAPSIOCK > L.t [FFE] ceniiiiiiii e 274
Lou g o T /T 275
Lo [0 I ==) PP PP PPN 276
o [o= 277
AlEU > o [P e 278
AL > o [FrE] e i 279
AU > L [FrEE] e i e 280
] 0111 N 1 = PR 281
4111 1 = PR 282
WINKEYA > ... [FrEE] ceniiii i 283
WINKEYA_I > .. [FrEE] ceniiii e e e e e e e e 284
WINKEYU > .. [FrEE] ceniiiii it e e e e e e e e e 285
WINKEYU_I > o [FrEE] ciniiiiiiii e e e e 286
LSt ol 1 /== 287
SPACE > ... [FrOE] cuiiiii i 288

[0 U] o T I <Y Y [289

< PGAN > o [FrEE] e it 290
= o (o B 1 == 291

Rl 410 1 T [o =T 292
m K et > e RO e 293
R o N [= 294
- <Gt > o [FrEE] e 295
- K AOWN > L [FrEE] e 296
1<) [T o I T PP 297
- < eXECKEY > ... [FrEE] cu i 298
- < PrINESCrEEN > ... [FrE] .oenieiii i e 299
R | 1< o o o= 300
e (< < (T [=T PP 301
Rl o (ol - I /== 302
S = | o T [=T 303
- < AWINKEY > o [FFEE] ceniiii i 304
= K TWINKEY > o [FrEE] ceuiiiiiiii it 305
- < APPSKEY > . [FrEE] e i 306
Rl 183 Yo = To [0 | =Y PP 307
- < NUMPAAL > o [FrEE e 308
= < NUMPAA2 > o [FrBE i e aa e 309
Rl 183 Y o= Ta JC T | =Y R PP 310
1= To o TN = g o [= PP PP PPRPPRPN 311
Macro CHANGE ICON - < me_changeicon >() ... [Pro]....ccocceeeiiiiiiiiiiiiiiei e eea 312
Macro execution: ONLY COMMANDS - < cmds > ... [Free]....ccovvviiiiiiiiiiiiiiiieineneans 313
Macro execution: KEYS / FREE TEXT + COMMANDS - < keys > ... [Free]ccccvvvvvnnennnn. 315
Macro ENABLE/DISABLE - < me_macroenable >() ... [Pro]....cccccoveiviiiiiiiiiciniinineans 317
Macro group ENABLE/DISABLE - < me_macroenable_group >() ... [Pro]cccevvenennnen 318
Macro program EXIT - < me_eXit >() ... [Pro] .cccoviiii e 319
Macro execution: DISABLE "Shift+Esc" hotkey. - < me_stop_disable > ... [Pro]............. 320
Macro execution: ENABLE "Shift+Esc" hotkey. - < me_stop_enable > ... [Pro] 322
Macro execution STATUS WINDOW - < me_status_window >() ... [Pro]......cccccevenvennnnn 324
Macro execution: STATUS UPDATE - < me_status_set >() ... [Pro]cooovviveeiienniinnnnns 326
Macro execution: Progress/Cancel SHOW - < me_macroprogress_show > ... [Pro]........ 328
Macro execution: Progress/Cancel HIDE - < me_macroprogress_hide > ... [Pro]........... 329
Macro File: Set dirty - < me_seffiledirty >() ... [Pro]..cccoieiiiiiii e 330
MaCrO FIOW CONEIOL ... v i e e e aeas 331
A Y el o= U1 =T I o J 332
WAILT = < WX () oo [FrE] ceniiiiiiii e e e e 334
Loop BEGIN - < begloop >() ... [Pro] ..o 335
Loop END - < endloop > ... [PrO]..cu et e e et e e e e e e a e 336
IF = < f >() ve [PIO] ceei i 337
] S = LT [= T 339
]V R = o o [I T 340
Send KEYSTROKES as FAST as possible - < faston > ...
122 0 341
Send KEYSTROKES on SLOWEST rate - < fastoff > ... [Pro]
.. 342
Jump TARGET - < label >() ... [PrO] cevuee e 343
JUMP TO - < goto >() oo [PrO] cueiii e 345
Macro EXIT - < eXitmacro > ... [PrO] ...ccoviiiiiiiiie e e 347
WAIT FOR - < Waitfor >() ... [Fre€] uuen it e 348
IF WINDOW - < if_Win >() .. [FrEE] uuiii ittt 351
| I 1 1 (ST () T 2 o J 353
IF FOLDER - < if_dir >() v [PrO] ettt eaas 355

IF CLIPBOARD - < if P >() oo [PrOT coeeeiiii e 356

IF NUMERIC - < if_num >() ... [Pro] ..ccceiiiiiiiii e, 358

IF STRING - < if St >() oo [PrO] cenieiiii it e e e eaas 360
Debug BREAK POINT - < =dbp- > ... [PrO]..ccuiiiiiiiiiii e e e 362
If PROCESS - < if_process >() ... [PrO] e e 363
Error CLEAR - < me_error_clear > ... [Pro]...ccccoiiiiiiiiiiiiiii s e 364
Error message DISABLED - < me_error_nodisplay > ... [Pro].....ccccoeveiiiiiiiiiiniiiienennnes 366
Error message ENABLED - < me_error_display > ... [Pro]ccovvviiiiiiiiiiiiinieeeea 367
Macro EXIT (do not exit calling macro) - < exitmacro_soft > ... [Pro].......ccccecevveviiennnnns 368
If KEY / MOUSE BUTTON - < if_Kkey >() ... [PrO] . ccieiiiiiieiiiiii e 369
Procedure END - < proc_def_end > ... [Pro] c.ciuiiiiiiiiiiiiiiei e e 371
Procedure BEGIN: - < proc_def_begin >() ... [Pro] ...cccoiiuiiiiiiiiiii e 373
Procedure CALL: - < proc_call >() ... [Pro] «.cuoeeiiiiiii e 375
INCLUDE here macro text from - < -include- >() ... [Pro]cooveiiiiiiiiiiiiiiiincceeen, 377
Procedure EXIT - < proc_exXit > ... [Pro] ..o 378
Repeat steps UNTIL - < fOr >() ... [PrO] e 380
Repeat steps END - < for_end > ... [PrO] ..ccuuiiieiiiiiiiiiiiie et e e e a e 383
Repeat steps BREAK - < for_break > ... [Pro]....cccoviiiiiiiiii e 385
IF WINDOWS SERVICE - < if_ WinsvC >() ... [PrO].cccuviiiiiiii e 387
MOUSE COMMANGS ... evueiteeite et et e e e e e e e e e e e et e e s s e e neea e e s e e e e e ea s ea e e e e e eneenns 388
MOVE - < MM >() .. [FrEE] ceniiiiiii i e e 389
BUTTON: - < MIDA > ... [FrEE] . ceniiiiiii i e e e e e e en e e 391
BUTTON: = < MIbU > ... [FrEE] e riiiiiii i e e e e e s e e e r e eanenes 392
BUTTON: - < mMrbd > ... [FrE].cu it e e 393
BUTTON: - < MIrbu > .. [FrE].en it s e e e aa e 394
BUTTON: - < mmbd > ... [Free] ..o 395
BUTTON: - < MmMDBU > ... [FrEE] e it e r e e e e e 396
COORDINATES - < mousemove_relative_win > ... [Free]....ccccvviviiviiiiiiiiiiirenenennennns 397
COORDINATES - < mousemove_absolute > ... [Fre€].....ccocoviiiiiiiiiniiiine e, 398
COORDINATES - < mousemove_relative_pos > ... [Free].......ccoiviiiiiiiiiiiiiiiiinnean, 399
COORDINATES - < mousemove_relative_definedwindow >() ... [Free]......ccccovvvnrennnnn. 400
BUTTON: - < MX1bd > ... [FrEE] civuiiiiiiiiiii et a e 401
BUTTON: - < MXIDU > ... [FrEE] . erieiiii i e r e e e en e eane e 402
BUTTON: - < MX2bd > ... [Fre€] .cririiiiiiiii e e e e e e a e eas 403
BUTTON: - < MX2DU > ... [FrEE] . eriiiiiiiiii e r e e e e ane e 404
BLOCK - < MOUSE_bIOCK > ... [PrO] . cu it r e e e e e e e e e e e e anen e ens 405
UNBLOCK - < mouse_unblock > ... [Pro]....ccuiuiiiiiiiiiiiiee e e e e 406
WHEEL FORWARD - < mwheel_f > ... [Fre€]. it 407
WHEEL BACKWARD - < mwheel_b > ... [Fre€] ..ccuiviiiiiii i 408
DOUBLE-CLICK - < M2click > ... [FFrEE]...iuuiiriiiiiiiiiiii s ea e 409
Networking/Web/E-Maiilc.iiuiiiiiiii e 410
Web OPEN PAGE - < wwwopen >() ... [Pro] .cuoeeeiiiiiiieee e 411
Net drive CONNECT - < netcondrive >() ... [Pro]...ccccvieiiiiiiiiiiin e 413
Net drive DISCONNECT - < netdiscondrive >() ... [Pro]...ccccoeeeriiieiieiiiciieeieeeeeeneeaees 414
ftp GET - < ftp_getfile >() ... [PrO] . e 415
ftp PUT - < ftp_putfile >() ... [Pro] e 417
ftp DELETE - < ftp_delfile >() ... [PrO] .. it 418
ftp RENAME FILE - < ftp_renamefile >() ... [Pro]..ccooiiiiiiiii e 420
ftp CREATE DIRECTORY - < ftp_createdir >() ... [Pro]..cccoieiiiiiiiiiii e, 422
ftp DELETE DIRECTORY - < ftp_deldir >() ... [Pro]...cccviieiiiiiiiiii e 424
E-mail SEND - < email_send >() ... [Pro]...cccuiiiiiiiiiiii e 426
Http DOWNLOAD - < download >() ... [Pro] . ecceeiieiiiiiii e e e 427
ftp GET FILE SIZE - < ftp_filesize >() ... [Pro].ccccieiiiiii e 429
ftp GET FILE MODIFICATION TIME - < ftp_filetime >() ... [Pro] .ccoevvivviiiiiiiiiceieeenn, 430
E-mail POP3: GET LIST - < email_pop3_getlist >() ... [Pro] ...coevovervieiiiiiiiiieieeeeens 432

E-mail POP3: GET E-MAIL - < email_pop3_getmail >() ... [Pro].cccceveieiieiiiiiiiiiieinenenn. 435

E-mail POP3: DELETE E-MAIL - < email_pop3_deletemail >() ... [Pro]ccovovvviieniennnnn 438

E-mail POP3: CONNECT - < email_pop3_connect >() ... [Pro]...ccccoovviiiviiiiiiiiiiiiiinnnns 441
E-mail POP3: DISCONNECT - < email_pop3_disconnect >() ... [Pro]....ccccoevvvviiieninnnnns 442
E-mail SMTP SEND MAIL - < email_smtp_sendmail >() ... [Pro]....ccccoveiviiiiiiiiiniininnnns 443
Web FILL FORM - < www_fillform >() ... [Pro]...cccuuiiiiiiiii e 444
HTML Page Links - < html_page_links >() ... [Pro] ...ccocoiiiiiiiiiiiiii e, 445
[] 2PN 447
OPEN - < 0dbc_0pen >() ... [PrO] . cce et 448
CLOSE - < 0dbC_cloSe >() vva [PrO] ceu i e e e e 451
Execute SQL - < odbc_exec_sql >() ... [Pro] ..o 454
Select SQL - < odbc_select >() ... [PrO] coeuveeiiiiiiiie e 457
Select GET - < odbc_select_get >() ... [Pro] .o 460
Select NEXT - < odbc_select_next >() ... [Pro]..cccciiiiiii e 463
R L4 =01 =P 466
MACRO - < rUN >() s [PrO] e 467
SELECTED MACRO - < liStboX >() vv. [PrO]euucee i 469
.MCR FILE - < extmacro >() ... [Pro] ...cciieiiiiiiiei e e e e 470
APPLICATION - < execappeX >() ... [Fre€] . ovuiiniiiiii it 471
EXTERNAL SCRIPT FILE - < script_file >() ... [Pro]..ccceveiiiiiiiiiieeeee e 472
FILE CONTEXT MENU COMMAND - < run_ctxcommand >() ... [Pro]cccoeveiiiniinnnnnns 474
EXTERNAL COMMAND - < exttmd >() ... [Pro] coeeen i 475
)] L= 1 [PP 477
Screensaver START - < scrsavestart > ... [Pro] ..o 478
Set system TIME - < setsystime >() ... [Pro]..c.oceeiieiiiii e 479
Set system DATE - < setsysdate >() ... [Pro]...cocviiiiiiiiii e 480
Shutdown - < shutdown >() ... [PrO]..cuiee i 481
Registry CREATE KEY - < reg_createkey >() ... [Pro] «.ccovvieiiiiiiiiici e 482
Registry DELETE KEY - < reg_deletekey >() ... [Pro]..cccoeviiiiiiiiiiiiei e 483
Registry DELETE VALUE - < reg_deletevalue >() ... [Pro]...ccccovviiiiiiiiiiiniiiiiccieei 484
Registry ENUMERATE SUBKEYS - < reg_enumsubkeys >() ... [Pro]......ccccovvviiiiininnennnn. 485
Registry ENUMERATE VALUES - < reg_enumvalues >() ... [Pro]...ccccoiviiiiiiiiiniiininnns 487
Registry GET VALUE - < reg_getvalue >() ... [Pro] «.ouoveeriiiiiiieieciee e 489
Registry SET VALUE - < reg_setvalue >() ... [Pro] ...ccooiiiiiiiieea, 490
Printer SET DEFAULT - < printer_setdefault >() ... [Pro] ..c.cooiviiiiiiiiii e 491
Speakers VOLUME - < multimedia >() ... [Pro]...cccoviiiiiii e 492
Process KILL - < process_Kill >() ... [PrO]....iceiiriiiiii e ea e 493
Screenasaver ENABLE - < scrsaver_enable > ... [Pro]....cccccoviiiiiiiiiiiiii e 494
Screenasaver DISABLE - < scrsaver_disable > ... [Pro]...ccccoviviiiiiiiiiiiiinieeieeneaneaneans 495
Process ENUMERATE - < process_enum >() ... [Pro] .cccooeiiiiiiiiiiiiiiirccceeeea 496
WINDOWS SERVICE - < WINSVC >() ... [PrO] ceueeeniiiiiiie ettt e e 499
Text & Variable Manipulationccuvieiiiii e e 500
Y = IR V7= | Y= i () N 1 o 501
INSERT to active application - < varout >() ... [Pro]...ccccveeiiiiiiiiiirce e 504
SAVE - < var_save >() «.. [Pro] e 506
0D I V7 | ol (oY= o B () T I = o [507
PARSE - < var_parse >() ... [Pro] couoeiiiiiii e 508
OPERATION - < var_oper >() ... [Pro] .o 510
Regular Expression Find - < regex_find >() ... [Pro]..c.ccoiviiiiiiiiiiii i 513
ENCRYPT/DECRYPT - < data_crypt >() ... [Pro] .ccuoveriiiiiiiici e 515
PARSE - < text_parse >() ... [Pro] e 517
(O E T {1 =)= u o o PP 519
SOUND - < DEEP >() vov [P0 cuiniiiiiiii e e e 520
Message SHOW - < MSG >() ... [Fre€] .. 521
Message CLOSE - < mSgoff > ... [Fre€]...ccuiiiiiiiiii e 524

E-mail COMPOSE - < @Mail >() 1. [PIO e iuiiiiiiiiii ettt e et e e e e e s sneneneneens 525

Net drive WINDOW connect - < netcondrivedlg > ... [Pro]

.. 526
Net drive WINDOW disconnect - < netdiscondrivedig > ...
220 PP 527
Form OPEN - < form_show >() ... [PrO] ..cciiiiiiiii e 528
Form FIELD - < form_item >() ... [PrO] ceoieniiiii e 531
Menu ADD ITEM - < menu_additem >() ... [Pro]...cccoieiiiiiiiiii e 534
Menu SHOW - < menu_show >() ... [Pro]..cceieiiii e 536
Menu of MACROS - < macromenu >() ... [Pro]..cccviiiiiiiiiiii e 538
WiIndow Manipulation ... 539
ACTIVATE - < aCtWin >() ... [FrE] . ierniii ittt e e e e 540
MOVE - < WINMOVE >() ... [PrO] cuiiiiiiii i 542
RESIZE - < WINIESIZE >() oo [PrO] coveniiiii i e e 543
Minimize All - < winminall > ... [Pro] ..o e e 544
CLOSE - < WINCIOSE >() vve [PIrO] cenieeiiiiiiei ettt e e e e e e e e e e 545
CHANGE STATE - < winstate >() ... [Pro] . ccueieiiii e 546
ENUMERATE - < win_enumerate >() ... [Pro]..ccciiiiiiiiiiiini e 547
INFO - < WININFO >() oo [PrO] e e 548
Image FIND in WINDOW - < win_findimage >() ... [Pro]...ccccoveeviiiiiiiinee e, 550
Image CAPTURE from WINDOW - < win_captureimage >() ... [Pro]...cccccovevviiiiiiinnnnn. 553
APPLICATION - < actapp >() ... [Fre] et 555
D 0 2T =T PP 556
File Open - < xml_file_open >() ... [PrO] «ouuieuiiiiiiiiiii e 557
File Save - < xml_file_save >() ... [Pro] .c.coouriiiii e 558
Element Get - < xml_element_get >() ... [Pro] ..o 559
Attribute Get - < xml_attribute_get >() ... [Pro]...ccoieiiiiii 562
File Close - < xml_file_close >() ... [PrO] «ceuieuiiiiiiiiiiii e e 565
Navigate to Element - < xml_element_navigate >() ... [Pro]...cccccooiviiiiiiiiiiiiiiiinees 566
File Create - < xml_file_create >() ... [Pro]...ccoieiiiiiii e 569
Element Set - < xml_element_set >() ... [Pro]...ccccooviiiiiiii 570
Attribute Set - < xml_attribute_set >() ... [Pro] ...cooeeiiiiiiiii 573
Element Create - < xml_element_create >() ... [Pro]....ccooeeuiiiiiiiiiiiiiieen e 576
Find Text - < xml_findtext >() ... [Pro]...cceiiiiii e 579
How To Write Reliable MacroS?.......ccuiiiii e aaas 582

TrOUDIESNOOTING. ... et e e 584

Overview

Perfect Keyb oard 9.3.0, www.perfectkeyboard.com

The Perfect Keyboard allows user to create "macros” to simplify, speed up, and remove errors in
repetitive tasks (such as typing the same phrases, copying/deleting files, downloading files, etc.). The
Perfect Keyboard allows user to create and use at once multiple macro files that are represented as
tabs in the main window (see below). Macros in each macro file are organized in macro groups that
have a tree structure. Each macro group can contain multiple macros. Macros from the selected group
are showing in the list. The macro selected in the list is displayed in the macro editing are (bottom-right
area of the main window) where user can edit its content and properties.

The main window of the program looks like this:

L';'j Perfect Keyboard 9.0.0 Professional [UNREGISTERED] - MyMacras4pk® [ADMIN] - a x
|FILE EDIT VIEW INSERT TOOLS HELP
COH P & BAKL:FX|QA2O ®
MyMacros.dpk* X
A0 Macros “Mame Trigger Conbent #
My Macros 8 Open link fram chpboard Run APPLICATION *%_vCipText%" {other parameters: Paramelers = o
(] Demo Macros msmmpad Macro execubon: ONLY COMBBM 1
(A Macro Templates
W content Triggers ~ Scope " Properties Bl
Pl @ X EEXEE QAL e
A
Macro execution: ONLY COMMANDS °
3 | IF WINDOW *["Notepad|Notepad|f366#152]" s Open (Malch=Partal)
["Motepad”|NotepadB366#152] v i M Partial W » Monmia BT Ty
ELSE execul
Run APPLICATION “Matepad exe” (ol 1 CNORE> ananer, W ¥ Siate = Mormal M
E: Steps 3 Code
orials
|Copy 3 NUM 670, 22 AESNo KC44
Legend:

1 - Tabs that represent macro files open.

la - Click to close macro file represented by currently selected tab.
2 - Tree structure of macro groups.

3 - List of macros from the currently select macro group.

4 - Macro editing area.

After the Perfect Keyboard is installed, the program group is created in the Start menu. To start the
Perfect Keyboard just click it's item in the Start menu. There is a program icon showing in the Task bar
tray area when program is running. Clicking on the icon will show/hide the program’s main window (as

http://www.perfectkeyboard.com
http://www.macrotoolworks.com

shown on the figure above), right-click on the tray icon shows a menu with basic options. When the |
program is exited (from tray icon menu or when shutting down Windows) it remembers if the main
window was showing or hidden and starts it in the same state next time.

Support, Feedback, Privacy, Uninstall

Support

Please use one of the following options when reaching a support:
e Support Page
o E-mail support

Feedback

Please provide us feedback so that we can improve the software.
o E-mail support

Privacy

o The software does not collect and send out any information (the software is only communicating
with Pitrinec Software (https:/Amww.pitrinec.com) home page in order to determine if a new
version is available - this feature can be turned off in Program Settings dialog box).

« Pitrinec Software does not share or provide to others any information that is received from users
during support communication.

« Pitrinec Software does not share or provide to others any user identification information such as
names or e-mails.

Uninstall

Use standard Windows means (Control Panel in Windows 7, Settings Apps & Features in Windows 10)
to uninstall the program if needed.

http://www.perfectkeyboard.com
https://www.pitrinec.com/index.php/en/automate-software-support
http://macrotoolworks.com/index.php/en/automate-software-support/automation-software-contact
http://macrotoolworks.com/index.php/en/automate-software-support/automation-software-contact

This Help Document Limitations

o The Perfect Keyboard is distributed in multiple editions (Free, Professional). It is possible that
features described in this help document are not available in all the product editions.

« This help documentation contains the product screen-shots. Since the product is available for
multiple versions of Windows, and since the product evolves dynamically it can happen that
screen shots from this document do not fully match the latest users experience.

« This document only describes features that are not obvious.

http://www.perfectkeyboard.com

Macro

The term "macro” has many meanings in different contexts. In the context of the Perfect Keyboard the
macro is a user defined set of data that when executed by Perfect Keyboard automatically does a task
that user is typically doing often manually. There are some examples of macros:

A macro inserts larger (several paragraphs) predefined text to an e-mail client, document editor
or chat client when user hits a hot-key or types a text shortcut.

A macro copies Excel document files modified during last week, put’s all of them to password
protected zip file and send’s it to a remote server. Such macro can be scheduled to run every
Friday night.

A macro displays a form to be filled by user, and based on the data inserted the macro does
some more complex task (for example: updates Excel sheet and sends it out via e-mail).

A macro downloads a web page, detects a keyword, and sends notification e-mail.

Macro can be edit/modified in macro editing area that consists of four tabs:

T content Triggers ~ Scope " Properties

Content
The content defines what macro does when it is executed. There three types of macros: text
macro, clipboard macro, and general macro.

Triggers
The triggers define how user starts the macro execution (hot-key, time scheduled, etc.).

Scope
The scope defines in what applications (windows) the triggers work - if the macro should runin all

applications or just in specific one.

Properties
Inthis tab it is possible to set the macro name, icon, and several other properties.

http://www.perfectkeyboard.com

Macro >

Content

2 content Triggers ~ Scope ¥/ Properties

The content defines what macro does when it is executed. There are three types of macros the Perfect
Keyboard allows you to create:

e TextMacro
The content of this type of macro is rich text (unicode, rich text with formatting, images, and links).
When macro is executed it inserts the text to other application such as e-mail client, word
processor, etc.

e Clipboard Macro
The content of this macro is data (graphics, tables, text, file links, etc.) saved (persisted) from
clipboard. When macro is executed it pastes the clipboard data to other application.

o General Macro
This type of macro can consist of various macro commands to manipulate keyboard, mouse,
files, folders, clipboard, ftp, web, etc. This type of macro can execute other macros including text
macros or clipboard macros. General macro can be either created manually or it can be also
recorded.

http://www.perfectkeyboard.com

Macro > Content >

Text Macro

Text macro allows user to create a rich unicode text with full font formatting and images. The macro can
be created by clicking on the "Add Text Macro" button as shown here:

COHP» &% -BAL = FE XA

The macro can look like this:
A content Triggers — Scope </ Properties

> biubBNRNEEEEEETLLE—

This is sample text macro. It can contain:

Unicode characters and symbols: J 3% v yl
Font formatting
Links

Macro variables % vCurrDate DDMMYYY Y%
« Parameters %oparaml%, %oparam2%....

0K Cancel

These text formatting features are supported:

« Bold

° ltalic

e Underline

e Fonts

e Colors

o Bullets

e Numbering
e Indention

o Alignment
o Hyper-links
e Pictures

e Horizontal lines

When macro is executed then the macro text is copied to the clipboard and pasted in other application.

http://www.perfectkeyboard.com

Variables Replacement

Text macro can also contain variables (see variables and system variables). In such case, when macro
is executed then the variables are replaced by the variable value - for example by the current date. In
order to use variable replacement feature the text macro must be run from within a general macro using
RUN MACRO / <run> command. The general macro sets the variables to the required values and then
the text macro is executed using RUN MACRO / <run> command. Here is an example:

This is a simple text macro:
A content Triggers — Scope %/ Properties

P biufhWVWEEEEEEELHE—

Today date: %ga Today%e
Tomorrow date: %ega_Tomorrow%a

And this is the general macro that sets "ga_Today" and "ga_Tomorrow" variables and then runs the text
macro:

£ content Triggers ~ Scope % Froperties
I -
> Uiﬁm.‘c}é ?xﬁlﬁ_—;"[—\ ! =—afiim = i MBcro Error: Def havior
Date & Time : DATE Insert or save to Variable Format=Windows user default - long tor=/, Day lead i Yes, Mont ading
Yes ft = O, Variable for result = ga_Today
Date & Time : DATE Insert or save to Variable Format=Windows user default - long tor=/ eading Yes, Mont
T Yes ft = 1, Variable for result = ga_Tomormow

3 |Run MACRO TodayTomorrow, Parameters = <none=, Time to wait = <nones

(Note: Make sure that user defined variables used in text macro always have "ga_" prefix - for example,
"ga_MyVariablel".)

When the general macro runs the result is this (in MS Word):

Today date: Sunday, March 10, 2019
Tomorrow date: Monday, March 11, 2019

Expression Replacement

Text macro can also contain expressions (see expressions). For example, the text "1+1 = EXPR(1+1)"
will provide output "1+1 = 2",

Macro > Content >

Clipboard Macro

Clipboard macro allows user to persist any clipboard content within macro file and paste this clipboard
content any time. The clipboard macro can be created by clicking on the "Add Clipboard Macro" button:

COH» % BAM):E XA 2O
(Note: When creating clipboard macro the current clipboard content is immediately used.)

The macro can look like this:
B content Triggers ~ Scope % Properties

=R ZP

Users Sessions Bounce Rate Session Duration
18 25K 63.48% Tm 22s

15.7% t6.4% 4 0.5% 12.7%

ast 90 days

Clipboard data size: 3.43 MB

When the macro is executed then the persisted macro content is loaded to the clipboard and then
pasted to the application in which the macro is executed.

There are these operations supported from the clipboard macro toolbar:
o Execute macro

Copy the clipboard macro content to clipboard

Paste the clipboard content to the clipboard macro

Remove unwanted clipboard formats from the macro

Shrink the clipboard data preview to fit the view area

Parameters Replacement

Clipboard macro can also contain parameters to be replaced. In such case, when macro is executed
then the parameters are replaced by the required values. In order to use parameter replacement feature
the clipboard macro must be run from within a general macro using RUN MACRO / <run> command.
Here is an example:

This is the Clipboard Macro (named "invoicel_clp"). It contains an invoice template created in MS
Word. Notice highlighted parameters:

http://www.perfectkeyboard.com

B content Triggers ~ Scope % Properties

bl P 2
ey Invoice No. parinvoiceNum

To Quantity Description Unit Price Total
Name
Street Address pQuant1 pDescr1 pU1 pT1

City, ST ZIP Code

Ship To

Same as recipient

Clipboard data size: 389.29 K8

OK Cancel

This is the general macro. It defines variables used to replace the parameters in the clipboard macro:

¥ content Triggers ~ Scope % Froperties B
’ - GE’% rx ﬁ F:J)'(:J\ 1 s n rror; Dof r.
1 Variable SET "vimvMum=111222", Message text="<none>
Variable SET “v(Q1=3", Message text="<none>
Variable SET “vD1=USB Mouse™, Me e text="<none>
Variable SET “vU1=34.907, M text="<none:>
Variable SET “vT1=EXPRO2(%w0 1% v 19%)", Me < IR =
Run MACRO invoice1_clp, Parameters =
6 replace_whatparlnvoiceMumreplace_by:%vinvMumStreplace_whatpQuantlreplace_by 3wl 1% replace_whatpDescrireplace_by%vD1%6replace_what:pU1replace_by- 3wl 1% repla
When this general macro is run then it produces output like this (in MS Word). Notice the parameters
replaced by defined values:
[
LR Invoice No. 111222
To
Mame Quantity Description Unit Price Total
Street Address
City, 5T ZIP Code 3 USBE Mouse 34.90 104.70
Ship To

Same as recipient

Instructions

Delivery Instructions

Variables Replacement

Clipboard macro can also contain variable in format %variable%. If the variable exists (see variables

and system variables) then it is replaced by its value. This provides the same benefit as parameters
replacement but it is in many cases easier.

Expression Replacement

Clipboard macro can also contain expressions (see expressions). For example, if the clipboard macro
contains this text "1+1 = EXPR(1+1)" then it will provide output "1+1 = 2",

Macro > Content >

General Macro

General macro allows user to create a macro that:

Inserts a plain text (similar to text macro but just plain text, no rich content)

If macro content only contains a text like "Hello, world!" and this macro is executed then all what
happens is that the text "Hello, world!" is inserted to the application in what the macro was
started. It can be configured if the text is inserted through clipboard (copy text to clipboard and
then paste itin the application) or as a sequence of keystrokes (mimic keyboard).

And/or executes various macro commands to manipulate mouse, keyboard, files, windows,
clipboard, variables, registry, etc. Itis typical that macros consist from both plain text to insert and
macro commands. For example, the macro can look like this:

"Hello, <wx>(1000)world!"

Such macro when executed inserts text "Hello, ", then it waits for one second and then it inserts
text "world!".

There are some examples:

Sample macro

o
»

Content Triggers ~ Scope %/ Properties

b =B X[& QA=

“ v @ 2
“ [

This is the simpliest macro, just text.

http://www.perfectkeyboard.com

Content Triggers | Scope " Properties

P @ 2 =EX = E QA=
Today date is %_vCurrDate_ DDMMYYYY %.

Content Triggers - | Scope ¥ Properties

P s @ X =EXE - QA

<#> This macro activates "Notepad" application if it is opened
<#> and write some text into it.
<cmds>

<it_win>("[* | Notepad | #0 | #0]","OPEN",0)

<actapp>("[* | Notepad | #0 | #0]")<keys>Activate and write something...<cmds>
<else>

<msg>(100,100,"Notepad' is not opened!","Message",1)
<endif>

Content
’ L+

Triggers | Scope < Properties

¥ = E

<#>

<varset>("vInput=Customers info:
Name: John Smith

Phone: +001 564123123

Email: jsmith@email.com|

Name: Jack Back

Phone: +002 779835

Email: jp@comp.com","")<#>

<msg>(-100,-100,"Input text is:

%vInput%","",1,0,0,0)<#>

%vItems[0] %

s Ti

'E= Steps

r41l1ars
<y Code

X @8- QA=

<#> This example demonstrates how to use "text parse" command

<text_parse>("%vInput%","'name:*phone*email:*","vIltems","vltemsSize","-nc -l

<msg>(-100,-100,"% vItemsSize % items retrieved:

Content
’ L+

Triggers - | Scope * Properties

¥ =

<cmds>
<execappex>("notepad.exe","","",0,0)
{for}(“i:[}llfll%i%{vl i I_l I:SN “f“‘l“)

<for end>
<endit>

<html_page_links>("https:/ /www .pitrinec.com",vLinks,vLinksNum,"",""

X o & -QAls>

<#>This example shws how to use HTML Page Links commands

F

<waitfor>("WIN","OPEN","[* - Notepad | Notepad | #0 | #119]",15,0)
<actwin>("[* - Notepad | Notepad | #0 | #119]",0,0)
<if win>("[* - Notepad | Notepad | #0 | #119]","ACT",0)

<varout>("%vLinks[i] % %_vKeyReturn%",0)

The macro can be created by clicking on the "Add General Macro" button as shown here:

COHIP>P B BAK:EXIQA2O

Steps vs. Code

It is possible to view and edit macro in two modes: Steps and Code. Does not matter what editing
mode user uses, the macro always does the same thing. It is possible to switch between these two
modes any time using a tab shown on the figure below.

e Steps
If "Steps" is selected then the macro is displayed as a formatted sequence of steps. The macro
steps can be added, deleted, copy/paste, dragged and dropped....

Conbint Triggers = Scope ¥ Properties EH
4] E s ' . . C.\ c#y> On Macro Error; Default behavior | [
> o Sl =EX =& i | S o :
1 Form FIELD "Enable hot-keys (CtrisShiftsAlt=S, Cirbe1 ., CulB)® nd"l',rp&'ﬂrml:k oo (Dafaull valuavﬁ.:.gn_h‘ft'ﬂml‘h.ﬂ'ﬁFl::'lh'l.-l::"-'.._‘l.l'allable {14} 'ﬁ'
save field value=ga_McHoteysEnabled, Form identBer=11)
Form FIELD "Enable copy/paste toolbars® of type "Check box” (Default value=Saga_McToolbarsEnabled%. Variable to save field value=ga
fl
Fom OFEN 1", Window tile="Conligure MultClipboard
IF expe n %_vCanceled™in] evaluates as b
Variable SAVE "ga_McHotKeysEnabled” to file "ClipboardCig. var Imes=<nones “.pd_names<nones
Variable SAVE “ga_McToolbarsEnabled” 1o fe "ClipboardClg var”. %pi_name=<none> %pd_name=<onongr

t:gtm 5 Lo0e

0K Cancel Tutorials FAQ

« Code
If "Code" is selected then a plain macro text with its specific commands syntax is displayed. In
this case the macro can be edited as a text. It is not needed to know the macro commands
syntax to add a new command - when < is typed then a list of available commands is showed to
pick from.

#‘ Content Triggers _-"'Smpe " Properties bh
P & 4 Vs rx;;E-D\!nonﬁzﬂmmﬂ-_,mmﬂ.

<form_nem>{"1","Enable hot-keys (Cil-Shit+Al+5, Cir+-1 . Crb 51" "CHECK", "“ga_McHotKeysEnabled:" "ga_McHotKeysEnabled™. 1}<#=
<fgrm_em>{"f1"_ "Enable copy/paste woolbars” "CHECK™ "%ga_McToolbarsEnabled®" "ga_McToolbarsEnabled™ 1)<#>
<farm_show={"1"."Configure MultiChpboard™ "C_users|PetiProjectsWorkWINWORKWPS_VERE DevelopDemoFiles\MTWiMacroF iles\SharedClhipboards\co
sit=("%_vCanceled!=1"j<#>Save vanables

evar_save>{"ga_McHotKeysEnabled™ “ClipboardCig var)iz

<var_save>"ga_McTeoolbarsEnabled™ “ClipboardCig. var<i=

<ift={"%ga_McHoeysEnabled ==YES"ji>

<rve_macroanable_group>"Hot-Kays" 1.0

<glggrc>

<mie_macroenable_group>"Hot-Keys" 0,0

cendif-cd>

<ift>"%ga_McToolbarsEnabled==YES j#>

«<mie_macroenable_group>{"Toolbars®1,0)<#>

calggrcds
<me_macroenable_group>{"Toolbars® 0,0)<#>
<andifradx
<ndif>
€ >
TE step} o Code
O Cancel Tutorials FAQ
Run Macro
One of the way how to execute macro is by clicking on "Run Macro" button in the toolbar:
B corment Triggers ~ Scope %F Properties Ex
Pag_'é{) P X s & -Q A == g0 Macro Ervee; Defous bebwe | [
1 Farm FIELD "Ensble hot-keys [CirbShit= A5 Cirl=1 _ Cirb=51" ol iype "Chack boa® (Dedsul value="5ga_McHoRaysEnabled®, Vanable o save beld valos=ga_McHolaysEnabled, Fom =)
selntfarsfl}
Farm FIELD "Ensble copy/paste olban™ of bype "Check box taull value="%ga_Me ToobarErabled™ bl o save B valug=ga_MeToolbateEnabled, F thur=f]
Form OPEN 11" W vi lg="Conbgae MulrChphoard
IF e S _wlanceled¥%l=1 oy
Variabla SAVE “ga_McHo®eysEnablad” to He "ChpboardCig var, % aesnoeRE pd RN
Variable SAVE “ga_McToobarsEnabled™ to fls “ClipboardClg var L i L0 W
To seps o» Cote
o e Tutorials FAQ

It is possible to run just selected steps of the macro. This can help with development of bigger macros.
To run just a subset of macro steps do this:
1. Select steps (click on them holding down "Ctrl" key). When the steps are selected then release
the "Ctrl" key.
2. Then press "Alt" key and hold it pressed.
3. Click on"Run Macro" icon.

Adding Command

Commands can be added to the macro by clicking on "Add Command" toolbar button or by hitting "+"
key on numeric pad.

rpE @I EX 0 E QA

If in "Code" mode, of course, the macro is edited as a plain text and macro can be typed the same as
any other text.

Macro Recording

Macro recording can be started by clicking on "Record Macro" button:

P L@ EEX QA S

See more about macro recording.

Command Editing

A command editor can be open by clicking on "Edit Command" toolbar button or by double-click on the
command.

R O T P B IO N

Macro debugging

Macro can be executed step-by-step and content of the variables can be inspected during the
debugging. Click on "Start debugging” to enable other debugging operations:

P @ X EEX|2E XA

e« Go to debug break
There is "Debug BREAK POINT" (<-dbp->) macro command that can be putin macro as a point
where to postpone debugging. This helps to quickly get to certain step in the macro instead of
getting there step by step.

o Go to cursor position
During debugging it is possible to navigate to other macro step/command and select it (move
cursor and click). This operation then runs the macro until it reaches the selected step/command.

« Show command to execute
If during the debugging user scrolls to other step/command and selects it then this operation
jumps back to the macro step/command that will be executed next.

e Show variable content
This operation displays a window that shows macro variables current value.

e Stop debugging
Terminates debugging.

Find

It is possible to search in macro for a text occurrence:

RSN O RdP S - .S SN VLR

The Perfect Keyboard searches in the text that is displayed based on Steps or Code mode. This
means that for example if user searches for the <run>command occurrence while having Steps mode
selected nothing will be found (because <run>command is in Steps mode displayed as more
descriptive "Run MACROQO").

Macro validation

Macro text is automatically validated. If a suspicious syntax is detected then a warning icon is
highlighted and enabled. Warnings detected can be displayed by clicking on the icon.

P o @ Y EX s B QA=

Comment Out

It is possible to comment out a selected part of the macro (one or more commands). The comment out
part of the macro is not executed. It is possible to uncomment the block again - just select portion of the
commented block and click toolbar button.

.' = [+ E]‘ 4}{- I-: x v IE:, - ':_4 1 oo o

Using Clipboard or As Keystrokes

As it was said, the general macro inserts plain text (such as "Hello, World!"). There are two ways how
the text can be inserted:

1. Using Clipboard
The macro text is copied (similar to Ctrl+C) to the Windows clipboard and then pasted (similar to
Ctrl+V) in the other application.

2. As keystrokes
The macro text is sent to other application as a stream of keystrokes the same as when user
types it on keyboard.

It can be selected for each macro which option should be |is_ed:
-s.

-| Q| A @:'s:

: . Default (Using clipboard)

=

Using clipboard
As keystrokes

If the "Default” option is selected then the option is the one that is defined in the program settings.

On Error

It is possible to define what should happen when a macro command fails:

|:_,.; 1 L#_,:_ n M [rgr: |h|ri

Read here more.

Macro > Content > General Macro >

Add Macro Command

Macros can contain commands that can add variety functionality to the macro. Macro commands can be
added in Macro Steps / Macro Text view by hitting + key on numeric keyboard or by clicking on
LT

% buttons.

Available commands are listed in the alphabetical order in the window shown below. The window either
displays the macro command names (Macro Steps, figure on the left) or macro commands syntax

(Macro Text, figure on the right) depending if Macro Steps or Macro Text tab is active in the Macro
Steps / Macro Text view.

iy Copy to Clipboard #2.2 TR <THIS1 P PP LA, FHEATIMIES = STO0E2, LTI 1 WAL= SO0
5 Copy o Clipboard Add X Add X
3 Copy o Clipboard r
2 Copyto Clipboard _‘Commands Tree, Commands List Last Used GLE | Commands Tree Commands List Last Used Filter
Ry Copyto Clipboard | » Date and Ti ands (2) - Excel: Open/ Create workbook "..." (Warksheet = "...", Show ="...", Workbook identifier ="...") |~
2 Disk manipulation commands (1) Excel: Read cell value [... ... 1> ... (Workbook identifier = ...)
2 Display commands (5) Excel: Save Workbook identifier=..., File path=...
W Excel commands (7) Excel: Write value to cell[... ..] <~ ... (Workbook identifier = ...)
Excel: Act nrksheet Workbook identifier=..., Worksheet=.. File .INI READ Section = "...", Key = "...", Variable to save data = "...", File = "...", Password = "..."
Excel: ".." (SAVE ="..") File .IMI WRITE Section = "...", Key = "...", Data = "...", File = "...", Password = "..."
& content u ! (Werkbook identifier = ...", Variable for sheet names = *...", Variable for number of sheets File Convert HTML to XML Convert HTML file _.. to XML file
’ [+] - [E orkbook ".." (Worksheet = "..", Show = "...", Workbook identifier = *...") File COPY from *..." to "..." (Subfolders = ..., Retries = ..., Variable for number of processed files = ..., Variable for
e Excel: Al value [... ...]-—=> ... (Workbook identifier = ...) | File CREATE *..."
1 | Run MACF Excel: Save Workbook identifier=..., File path=... - File CREATE SELF-EXTRACTING ZIP "._." from *...", Subfolders = ..., Startup file = ..., Option = ..., Password =
| v
Excel: Open/Create workbook) N Excel: Open/Create workbook ~
<excel_wb_open>("Workbook","Worksheet" Show, Workbook identifier) <excel_wb_open>("Workbook" "Worksheet”, Show Workbook identifier)
Available in° Professional edition Available in: Professional edition
This command opens a Microsoft ® Excel ® application with defined workbook (file) open (or This command opens a Microsoft ® Excel ® application with defined workbook (file) open (or
opens Excel ® with a newly created empty workbook). "Close workbook™ command must be opens Excel ® with a newly created empty workbook). "Close workbook” command must be
used to properly close Excel workbook used to properly close Excel workbook
Note: Microsoft ® and Excel ® are Microsoft Corporation registered trademarks Note: Microsoft ® and Excel ® are Microsoft Corporation registered trademarks
Parameter name Parameter description # Parameter name Parameter description
1 | Workbook The workbook (file) to open. If empty then a new workbook is v 1 |Workbook The workbook (file) to open. If empty then a new workbook is
created. created N
< > < >
N Cho e || Gomacomnier [e

When a command is selected thenits help content is shown in the lower area of the window. The help
content contains also a simple example that helps to understand how to use the command.

There are three tabs that allows to navigate in the available commands different ways:

« Commands List
All the commands are alphabetically listed.

¢« Commands Tree

The command categories are listed. Double-click on a category to get the list of commands
available in the given category. Go back to the category list by double clicking on the first line with

e LastUsed

Number of last used commands are listed in this tab. Use this tab to quickly access commands
you are adding repeatedly.

There is an option to keep the "Add" window open within the macro editor. Just click on "Keep open"
option to get the window open like this:

http://www.perfectkeyboard.com

B content I Triggers ™ Scope % Properties E

Co@ 7Y RN ®B QA :
P @ Y =REX 2B QA S []
Form FIELD "Enable hot-keys (Cirl«ShifteAlteS, Ctrb+1 . Cirl+5)" of type "Check box” (Defauli value=%aga_McHotKeysE “~ Commands Tree Commands List Last Used I:I
Vanable to save field value=ga_McHotKeysEnablad, Form identifier=f1) ~

Excel: Activate worksheet Workbook identifier=..., Workst ™

1

Fomm FIELD "Enable copyfpaste toolbars” of type "Check box" (Default value-%ga_McToolbarsEnabled®. Varable to

2 save field value=ga_MecToolbarsEnabled. Form identifier-f1) Excel: Close workbook °..." (SAVE ="..7)
Excel: Get worksheets (Workbook identifier = "...", Variabli
3 |Fomm OPEN "f1". Window Etle="Configure MultiClipboard” — - —
< I Excel: Open/ Create workbook ®..." (Worksheet = "...", Shi

Excel: Read cell value [... ...] ===> ... (Workbook identifier
. Excel: Save Workbook identifier=..., File path=...

5 <if> <H>Save variables Excel: Write value to cell[... ...] € ... (Werkbook identi
: > External seripts (3)

2 File manipulation commands (21)

» Folder manipulation commands (7)

» Keyboard commands (13)

4 IF expression %_vCanceled®l=1 evaluates as tue then execute following steps

6 Varniable SAVE "ga_McHotKeysEnabled” io fle "ClipboardCfg.var®, %p3_name=<none>, %pd_name=<none>

7 Vanable SAVE "ga_McTooclbarsEnabled” 1o file “ChpboardCig var®, %p3_name=<none> %pd_name=<nona>

B IF exprassion %ga_McHoleysEnabled¥%==YES evaluates as true then execute following steps - E —— ey . b
'E= Steps «<» Code
oK Concel | Tutorials FAQ

Just double-click on the command to get it it added to macro.

28

Macro > Content > General Macro >

Macro Command Editor

Macro commands can be edited in by double-clicking (or Enter key) on the given command or by

clicking onthe -+ toolbar button.

Ecit Command x

Form OPEM 17, Window title ="Configure MultiClipboard™

lcon file e | W
= Parameter Hame Farameter Value ~ |lerr.:}ﬁles".r-Tr'n'ﬂl'ﬂacmFIIES".Eharedcllphuards".r_-:unﬂgJre.lc:}
1 Farm |dentifier f1
2 Window Lithe Configure MultiClipboard
3 Leon file C:_users\ Petr\ Projects Work\ WINWOF
4 Tean Index o
3 Width 600
o Clear items from form ... Ro
7 ¥
oy ”

Help
3 lcon file The full path fo the file with the icon fo show A
4 lcon index Index of the icon within the icon fila
5 Width Width of the form window in pixels. If left empty, the default value is used.
6 Clear items from | If set to 1, all form figlds are removed after the form is closed. It is necessany to call
form on close “form_item" commands before the same form can be shown again by “form_show"
command. IT the oplion 15 0 When the form helds reman altached o the Torm.
i x A-coordinate of the form posiion on the computer screen. I nol supphed, the Torm s
centered.
8 v Y-coordinate of the form position on the computer screen. If not supplied, the form is
centered.
9 Show OK and If this parameter is sef to "1" then "OK" and "Cancel" buttons are automatically
Cancel uttons | displayed in the form. If this parameter is sef fo 0" then "0OK" and "Cancal" buttons
are not showing in the form window and it contains only controls that are added by
“form_item" command. W
A4k klmnbne AF
oK Cancel

All the command parameters are listed in the upper-left area of the window. The selected parameter can
be edited (modified) in the upper-right area. Notice the little buttons "..." and "V". The "..." button is
available just for certain type of parameters (such as files, folders, macro names, etc.) and it opens a
browse window. The "V" button open a window with variables and system variables and it allows to
insert variable as a parameter. It is possible to navigate from one parameter to other parameter using
"Ctrl+Up" or "Ctrl+Down" keys.

Help is displayed for each parameter in the bottom area of the window.

http://www.perfectkeyboard.com

Macro > Content > General Macro >

On Macro Error

It is possible to define what should happen when a macro command fails. There are these options:

o Default behavior
If this option is selected then the behavior is defined by settings in the (parent) macro group.

e Show error message
A message window with error description is shown on the screen.

« Log error and stop macro
« Log error and continue
e Run other macro

Other macro previously selected by user is run. The macro takes as the parameter the error
description.

http://www.perfectkeyboard.com

Macro > Content > General Macro >

Recorded Macro

One option how to create a new macro is record what | record Macro
user is doing with keyboard and mouse (typing on
clipboard, clicking with the mouse, etc.). The recorded

macro can then reply it back any time later. The

recorded macro is created automatically during the
macro recording. It is possible to later manually edit

and tweak the macro if needed.

Click "Record macro" button in the tool bar.

1.

Follow instructions in macro recording wizard.
After recording is finished, edit macro content if

needed.

Assign and configure one or multiple macro

triggers.
Configure macro scope if needed.

Assign macro name and configure other macro

properties.

Macro Recording

During macro recording, your keyboard keystrokes and mouse dicks are
captured and saved for later playback. Pleasa, read the following notes
conceming recerded macros:

1. Flease, keep in mind that recorded macro, when played in different
windowy'emdironment than it was recorded, can behave unexpectedly. The
racorded macro has to be played back in the same window it was
recarded.

2. It is recommended to use key shortouts (such as Ctri+F) rather than
clicks on window controls, Shorteut keys tend to be more reliable during
macro playback.

3. The most relisble macros are the ones that are not recondid but rather
created by hand. Such macros can indude <if_...> and <wait>
commands that make macros more resistant against timining anomalies
(for example, applications do not behawve the same as during macro
recording because the CPU is overloaded and the whole system is
significanty shower than usually).

Becord Now! Cancel Help

Events to Record

In this first step, the user can select what
events (mouse or keyboard or both) should
be recorded:

Keyboard - if checked, all keyboard events

(keystrokes) are recorded.

Mouse - if checked, all mouse clicks are
recorded.

Record mouse movements - if checked,
mouse movements are also recorded so that
mouse cursor movements are smooth when
playing macro back. (Note: The size of macro

recorded is much bigger.)

Mouse coordinates measures in:
1. Absolute (screen) coordinates

2. Coordinates relative to active window
3. Coordinates relative to current mouse position

Record Macro

Events To Record

Macro recording feature allows you to record the sequence of your
keyboard keystrokes, mouse movements and mouse dicks.

Specify what events you want to record
IKerboard
[] Mouse
Record mouse events in:
(@) Absolute coordinates (Screen coordinates)
(") Coordinates relative to acthe window
() Coordinates relative to current mouse position

[[JRrecord mouse movements

[+*] Record timing information Default

< ack Record Now! Cancel Help

Record timing data - if checked, timing data is saved during macro recording.

Use "Default" button to select default settings.

http://www.perfectkeyboard.com

Save Macro

In this step, the user defines where to save [Record Macro

the macro recorded in memory:
[¢) Save Macro

e« Add new item to the currently selected

group - new macro is added to the currently Selectwhere to save the recorded macro:

selected group.

(@Add new macro to the currently selected groug

o Overwrite currently selected macro -

() Overwrite currently salected macro

currently selected macro is overwritten by the W T T
new one recorded.

() Overwrite this macro:

e« Add new macro to this group - macro is

added to the group selected using “Select”
button.

e« Overwrite this macro - macro selected < ok S
using “Select” button is overwritten by the

recorded one.

Use "Default" button to select default settings.

Default

Help

Track Windows

Track active window Record Macro
For reliable macro playback it is
necessary that the keystrokes and E Track Windows

mouse clicks are played back in
the correct window - the same
window they were recorded in. If
an active window is changed
during macro recording (user
switches from one program, for
example Web browser, to other
program, for example Excel) then O None

this change can be captured in e
the macro and macro commands e
to activate proper window during
macro playback will be added
automatically to the macro.
Windows tracking options are:

dialog window is opened, for example).

playback the macro. Default option is "None".

<ok Becord ow

BExact window (example, "MyFile.bd - Notepad™)

Default

Cancel

It may happen that during macro recording the active window changes (a
In order to keep track of currently active window during macro playback,

macro recorder can be adding commands that will ensure macro will
always playback in the proper application window. Track the windows?

You can spedify now what window should be activated before you later

Help

« No

Activated windows are not tracked at all. Recorded macro will blindly playback

keystrokes and mouse clicks in currently active window.

e Generalized window

If the active window contains a file name (for example, "MyFile.txt - Notepad") then

the file name is replaced by * (for example, "* - Notepad"). This causes that the
recorded macro will properly run in all Notepad windows regardless the file open -
the macro will run the same in "MyFile.txt - Notepad" window as well as in the "Other
File.txt - Notepad" window (however, it will not run "My document.doc - Word"
window).

« Exactwindow
The active window is captured exactly as it is (for example, "MyFile.txt - Notepad").
This causes that the recorded macro will properly run in "MyFile.txt - Notepad"
window while it will NOT run in "Other File.txt - Notepad" window.

Define what window is automatically activated when macro playback starts:

« None - the macro playback will start in the currently active window. This option is
used for macros that are intended to work in multiple different windows.

« Define window - defined window is activated before macro playback starts. Use [...]
to define the window.

o Capture window - the window to activate is captured on the start of macro recording
(the window where first keystroke or mouse click occurs).

Use "Default" button to use default settings.

Ready to Start

Macro recording is started after user clicks “Record Now!” button. There is option to postpone
macro recording using “Shift” key. If user holds “Shift” key down and clicks “Record Now!” button
then the macro recording is started after “Shift” key is released. This allows user to use mouse to
activate (bring to front) appropriate window for macro recording.

Macro >

Triggers
Triggers define how to start macro & | —
execution. There are available these ™ “™" e Scops | Eropertien
triggers: _
G [Keyboard
« Keyboard Triggers % Wi Clhosiey
Ctri+AlR+C
Clear
Extended hot key:

[Ctriealte
Clear

[-+] Start macro after all hatkey
keys are released

[] Auto-complete

http://www.perfectkeyboard.com

Macro > Triggers >

Keyboard Triggers

There are three types of keyboard triggers:

Text shortcut
Text shortcut is a short text that starts macro execution when it is typed.

Do not delete shortcut - if checked the the typed text shortcut is not deleted. In other
case the typed text shortcut is automatically deleted.

Expand Automatically - if checked then the macro execution is started immediately
when the text shortcut is typed. In other case the macro is started after an expand key
(space bar by default) is hit.

Can be part of word - if checked then the text shortcut can be part of a word (example:
"MacroToolworks" where "works" is text shortcut). If not checked then text shortcut starts
macro only in case itis typed after a new line, space or other character or key that breaks
continuous word typing (example: "MacroTool works™).

Case insensitive - if checked then text shortcut starts macro regardless of capital
non-capital letters.

Follow case - if case insensitive is checked and the macro text is just free text (or at least
macro starts with free text) then the macro text is automatically modified this way:

shortcut -> this is macro text

Shortcut -> This is macro text

SHORTCUT -> THIS IS MACRO TEXT

Hot-key
This is a hot-key trigger such as "Ctrl+Alt+T". When the defined key combination is pressed the
macro execution is started.

Extended hot-key - This is a second hot-key that needs to be pressed in order to start
macro execution. The purpose is to make it possible to use the same hot-key (for
example, Ctri+Alt+T) for multiple macros and distinguish among them by extended hot
key. For example, "Ctrl+Alt+T" + "Ctrl+1" starts one macro, while "Ctrl+Alt+T" + "Ctrl+2"
starts other macro, and so on.

Start macro after all keys are released - if checked then the macro execution is started
after all keys (Ctrl, Alt, etc.) that are part of the hot-key are released (not pressed).

Auto-complete

This trigger only works for macros with just free text (or at least macro starts with free text). If
checked, then in a case user starts typing text that is the same as (matching) the macro text then
a hint window with macros list is shown. Once user pick the matching macro from the list the
macro execution is started (and typically the macro text is written next to where user was typing).

http://www.perfectkeyboard.com

Macro > Triggers >

Clipboard

This trigger type starts macro when clipboard content changes. One of these triggers can be selected:

» Clipboard data has changed or clipboard content was deleted
o Clipboard data has changed (but clipboard is not empty)
o Clipboard content is deleted and clipboard is empty

http://www.perfectkeyboard.com

Macro > Triggers >

Windows Service

This trigger type starts macro based on the defined Windows Service state. The Windows Service
name to test can be The condition

Run macro if Windows Service:
The name of the Windows Service to test for its state. The services names can be seenin Windows 10
"Task Manager" or in Windows "Computer Management”, services section.

The states:

e Running - the macro is started if the service is running.

« Not Running - the macro is started if the service is installed but it is not running.

« Installed - the macro is started if the service is installed regardless it is running or not.
« Not Installed - the macro is started if the service is not installed.

http://www.perfectkeyboard.com

Macro >

Macro Scope

By default, macro triggers start macro in
any application (window). However, itis
also possible to make macro triggers to
work only in defined windows. When
such a defined window is active then
user can use macro trigger to start the
macro. If other window is active the

trigger simply doesn't take any affect and
macro is not started. This feature can be

used to:

1. For different applications, create
different macros that use the
same trigger. (From the user's
point of view, the macros, for

£ content Triggers] = Scope | <* Froperties

Scope (in what windows/applications the macro will work) is defined:

{")1In the macro group settings
() Here:
This macro will work in currently active window:

Only if the currently active window is listed balow w

[Command Frompt| ConsoleWindowClass| #65| #64]

Specfy... Clear

OK Cancel

Tutorials

example, will do the same thing but macro for each application will be programmed different

way.)

2. Create macro that works only in specific application(s) while the trigger doesn't take effect in

other applications.

The scope options are:

e Inthe macro group settings

If this option is selected then it is deducted from scope set in macro group if the trigger works in

currently active window or not.

e Here

Macro triggers scope is defined for this particular macro.

o Always

e Onlyif currently active window is listed below

o Onlyif the currently active window is NOT listed below

e Specify..

This opens up a window that allows user to configure window identification

e Clear

http://www.perfectkeyboard.com

Clears the window identification selected in the list

Macro >

Macro Properties

Macro
fields:

properties include these o

Content Triggers = Scope] ¥ Froperties

Clmc_hk

Macro name

The macro name is shown
in the list of macros in the
main window if the name
columnis enabled in
program settings. The
macro name is also used
in:

« Macro menus
Macro menu

[pisable macro

f—|use thizs macro as a bemplabe

[Add to tray menu

[Juock keyboard and mouse while macro is running (must start as Admin)
[Run macro in separate process

[]Run this macro when macro file is loaded

Macro description:

0K Cancel

Change icon ...

Macro playback speed:
Default ~

Repeat macro:

1 -
-

480280231-187

shows up if multiple macros have the same trigger and the trigger is fired (such as
multiple macros have Ctrl+Alt+T hot key assigned and the this hot key was hit).

Macro menu also shows up when <macromenu> command is executed.

« Macro toolbars as button text or tooltip

For these two purposes above the macro name can:

« Contain macro variables (application global variable or system variable - learn more
here). For example, the macro name can be this: "Clipboard: %_vClpText%". The
variable %_vClpText% in the macro name is in macro menu or toolbar expanded to text

currently in clipboard.

« Be empty. In such case in the macro menus or toolbars either macro descriptionis
displayed (if not empty either) or the macro text (script). This can be handy if the macro
text (script) is just a simple text (text insertion macro).

Disable macro

If checked then macro triggers do not work and macro is removed from all macro tool bars (and

menus).

Add to tray menu

If checked, the macro will be added to the tray menu (menu that appears when the program’s tray

icon is right-clicked) for quick

Use this macro as template

macro start.

If checked, this macro will be available in “Add macro” drop down list. When a new macro is
created from template then it means that a copy of template macro is simply created.

http://www.perfectkeyboard.com

e« Run macro in separate process
See * below.

e Run this macro when macro file is loaded
If checked, the macro is automatically executed when the macro file is loaded.

« Lock keyboard and mouse while macro is running

If checked, the keyboard and mouse is locked during macro execution. This means that user
cannot affect macro execution by moving mouse to other position or by hitting keys on the
keyboard. From other hand, when this option is checked, it is not possible to stop macro
execution by pressing "Shift+Esc" key combination. In a case macro is running and it is
necessary to unlock mouse and keyboard again in order to stop macro execution then press
Ctrl+Alt+Del, return back to desktop and use "Shift+Esc".

e Macro playback speed

There are several options how fast the macro should be executed. This option makes only sense
when the macro plaintext is being sent as keystrokes and there is desire to slow up or speed
down the keystrokes sending. Typically, this option can be useful for recorded macros.

e Repeat macro
How many times the macro should be subsequently run.

« ID

Unique identifier of the macro assigned automatically to the macro by program. The ID can be
used to reference the macro.

o Macro description
Free form text. Can be used for notes, description, TODO's etc.

* Run macro In Separate Process

During a macro execution no other macro can start. This is not convenient for macros that can take very
long to finish (for example, FTP download). In such case there is an option to start time consuming
macro in separate process so that it doesn't block other macros from starting.

Starting macro in separate process means, that a new process to run the macro is loaded to computer
memory and the macro execution continues within this process. When macro execution is finished, the
process is released from the computer memory again. There are three ways how the program can be
started:

1. Normal (as currently logged user) - this is the default option.

2. Run as different user - this option allows user to start macro on other user's account. Itis
necessary to specify user name and password (and, optionally, domain). In addition, this option
requires specific user rights to be set in Windows: Act as part of the operating system
(SE_TCB_NAME), Bypass traverse checking (SE_CHANGE_NOTIFY_NAME) , Replace a
process level token (SE_ASSIGNPRIMARYTOKEN_NAME), Increase quotas

3.

(SE_INCREASE_QUOTA_NAME).

There is "WhoAml.exe" utility that is part of the program distribution. You can create simple
macro consisting just from <execappex>("whoami.exe","","",0,0) command. When the macro is
started a WhoAml.exe dialog box shows user name of the account under which the WhoAml.exe
program was started. This can be used to verify the macro is started on right account.

"As administrator" - this allows to run macro "as administrator" (with higher priority).

Run Macro

When macro is running, progress bar with “Stop” button is showing in lower right corner of computer
screen (if this is not disabled program settings). User can click on "Stop" button and exit macro
execution or click "Pause" button to pause and resume the macro execution. Macro execution can be
also stopped by “Shift+Esc” key combination. The progress bar can be turned off in main settings dialog
box.

There are many ways how to start macro execution:
o ByTriggers

e From Main window, Tray, Run command, etc.

« From other program

« From macro toolbar

http://www.perfectkeyboard.com

Run Macro >

By trigger

See Triggers

http://www.perfectkeyboard.com

Run Macro >

From Main window, Tray, Run command, etc.

Except macro triggers, there are also other options how to run macros:
e Tray Menu

User canright click on the program’s tray icon and select from macros listed on the top of the
menu shown. There are listed only macros with “Add to tray menu” option checked.

e« Main Window
The macro can be started from the main window using either toolbar button or "Tools/Run Macro
menu item.

e All Macros List
The user can right click on the tray icon and select "All Macros List" menu item. User can select
macro in the dialog box shown and click “Run” button.

e FromLink
User can create "Desktop Shortcut” (menu item "Tools / Create Desktop Shortcut”) to an item
and run the macro by double-clicking on the desktop shortcut.

e Drag & Drop
You can drag an item in the main window and drop it on a window you want to run the macro in.

e Run MACRO (<run>) Command
Macro can be run from other macro using Run MACRO (<run>)command.

http://www.perfectkeyboard.com

Run Macro >

From Other Program

There are several options how to run macro from other programs:

1. Running macro saved in macro file:
It is possible to start macro from other program or using a command line (Windows "Run" dialog
box or command prompt window). Just start Perfect Keyboard with this parameters:

-run:<NameOfTheMacroToRun> <MacroFilePath>

For example, "C:\Program Files\....\PerfectKeyboard.exe -run:Update C:\Program
Files\...\mymacrofile.4pk

This will cause the macro program is loaded to the memory, opens the file specified in the
parameter and runs the defined macro. Then the program exits.

2. Running a macro from currently opened macro file:
If the Perfect Keyboard is running with a macro file opened, then it is possible to start a macro
from an opened macro file using “RunMacro.exe” program. It takes macro name as a

parameter and causes the macro is executed.
Example: “RunMacro.exe mymacro” will cause the “mymacro” macro is started.

Since both macro program and macro file are already loaded in computer memory the macro
execution is significantly faster than case #1 above.

3. Running macro saved in .MCR text file:

It is possible to save macro to a text file with ".mcr" extension (just right-click in macro steps
editor and pick the command from menu). Macro that is saved in .MCR file can be started just by
double-clicking in the Windows Explorer or other file management program. Running .MCR macro
is faster then running the same macro using approach #1 above because it is not necessary to
load a macro file (probably with many other macros defined). Note: Subsequent macro calls
invoked by Run MACRO (<run>) command from the macro will fail. This means that an .MCR
macro should not contain Run MACRO (<run>) command.

http://www.perfectkeyboard.com

Macro group

Macro Groups All Macros
___ Core Macros
Macro groups allow to organize macros in hierarchical structure. The Hot-Keys
hierarchical structure maintains top-to-bottom feature propagation. For T""%
example, if top-most macro group is disabled then all its child groups — pae, Add Group
are behaving as disabled as well. The top-to-bottom feature " Add Child Group
propagation applies to properties like "Password", "Disabled", Copy
"Before/After", etc.
Delete
Export to XML..
Import from XML-
Disable
Macro Toolbar
Properties...
Macro Group Properties
General Macro Group Properties
General M, Toolbar S M Font
« Label - the name of the macro group e e s T
!..abel:
. . .o CopyToolbar Change icon...
« ID - a unique identifier that can be used to .
. [ID: 4B0875749-192]
reference macro group in some macro Description:
commands.
[Jpisabled

Description - field for group description or

notes.

Password - button to password protect

macros from this group (and child
sub-groups).

Change icon - button to select/change

icon.

Disabled - if checked, all macros from the
given group (and child sub-groups) do not

react to their defined triggers.

Fassword

Cancel

Help

Macro Toolbar

Enable - if enabled then a macro toolbar
representing this macro group is displayed
on the screen and macros from this group
are represented as buttons on the toolbar.

Macro Group Properties

General Macro Toolbar Scope Macro Font

Show macros from this growp in macro toolbar
[+
(@) Tab in main toolbar

] Flying toolbar
[attach teolbar to active window title bar

http://www.perfectkeyboard.com

e Tab in main toolbar - if this option is [] Autohide

selected then the group is presented as a (I show button tex
tab in main toolbar.

[]Lrse custom color

« Flying toolbar - if this option is selected

then the group is presented as flying toolbar
on the screen.

o Attach tool bar... - if checked, the

tool bar is showing around title bar
of the window that is on top
(receiving keyboard input).
Cancel Help
e Auto-hide - if checked, the tool bar
is shrinking to minimal size when mouse is not onit.

« Show button text - if checked, the macro name is showed next to button icon.

o Use custom color - if checked then the tool bar background color can be selected.

Scope Tab Macro Group Properties

. . General Macro Toolbar |S€ope | Macro Font
It is possible to make macros from the

Specify below in what windows (applications) macros from this group will be

given group (and all child SUb-g ro UpS) a available. Trigger of each macra from this group will start macro only in windows
. . . spacified balow.
window specific. This means that the
macro triggers (including macro toolbars) Trigger of 2 macro from this group will wark in currently active
Only If the currently active window is listed below g

will only start the macros in windows that
belong to the defined scope. There are
three options available:

Main Window L
[* - Microsoft Visual Studio |Hwndwrapper&[DefaultDomain;;92a5ce45-6584...

« Macros are available in all windows
(this is default).

« Macros are available only in

. . Spedify... Clear
windows user specifies.

« Macros are available in windows
other then user specifies.

See also:

Cancel Help
« Macro Scope

Macro Macro Group Properties

General Macro Toolbar Scope Font
Before/After Macro

0 M rror; Def h [

It is possible to configure so called "before"
" " *Before™ macro (if defined) is run before any macro from this group is started,
macro and "after" macro for each macro "after™ macro is run after macro from this group finishes execution, Macro names

TS LR Iy,

group. Names of existing macros go to
these fields (or fields can be left empty).
The "before" macro is automatically

executed before any Macro from this GrOUD; | mace = being exeased. sfer 1o macro test 1 adied 1o e end of anch oo
the "after" macro is executed after rom e

execution of any macro from the group is

finished. Example: Let's say we have a

group with five macros named 1,2,3,4,5

and the macro 1 is defined as "before" "After” text:

macro and macro 2 is defined as "after"

macro. Now when user starts macro 4, for

example, the macro 1 is executed, then

macro 4 is executed and then macro 2 is

executed. cance Help

"Befora” macro name: "After® macro name:

"Bafore” texd:

Before/After Text

It is also possible to use "before text" and "after text” fields to achieve the same result. The
difference is that macro text (macro steps) are put to these fields instead of names of existing
macros.

The "before" and "afterfeature simplifies macros creation in cases when multiple macros do the
same steps at the beginning/end of the macro execution (such as some initialization, conditions
checking, clean up steps, or including (<-include-> command) a macro file with predefined
procedures).

See also:

¢ On Macro Error

Font

User can select other font to be used in general macro code editor and in the macro list in the main
window.

Macro File

Macros are stored in a single macro file.

Macro File Tab

Create/Open/Save

Import / Export

Read-only / Read-write

http://www.perfectkeyboard.com

Macro File >

Macro File Tab

Each macro file that is open in Perfect Keyboard is represented by a tab. By FILE EDIT VIEW INSERT JOO
switching the tab itis possible to edit particular macro file content. It is possible o o WS Q,
to right-click the tab in order to close it or to navigate to the folder where the - =
macro file is located. PetrMacrosdtw MyMacros4tw® |
All Macros

My Macros

http://www.perfectkeyboard.com

Macro File >

Create/Open/Save

The macro files are by default located in "Documents\PerfectKeyboardFiles\MacroFiles" folder. A new
file can be created using “File/New” menu command, an existing file can be open by clicking on
“File/Open” menu command. All macros are saved within a single file which makes distribution of
macros to other computer an easy task. Just copy (or use "File/Save as" menu command) the macro file
to a removable media and then copy it back to hard drive on other computer and use "File/Open” menu
command to open the macro file.

It is possible to have open multiple macro files in the program. Each macro file is represented by a tab
in the window. Clicking on the tab displays the content of the given macro file - macro groups and
macros.

http://www.perfectkeyboard.com

Macro File >

Import / Export

It is possible to export macro file in XML format and import it in other macro file. The export/import
feature is available on:

e Macro file
Use "File/Export to XML" menu command to export whole the file content.

e Macro group
Right-click on a macro group and select "Export to XML" to export just this macro group.

e Macro
Right-click on a macro and select "Export" menu item to export (all) selected macros.

http://www.perfectkeyboard.com

Macro File >

Read-only / Read-write

If macro file has read-only access set then the content of the macro file cannot be modified. This feature
is used when there is a need to share macro file among multiple users and prevent it from unauthorized
modifications. Typically, macro files that are shared among many corporate users are located on shared
drives with properly (read-only) set access rights.

http://www.perfectkeyboard.com

Macro File >

File Backups

Previous Version File Backup

If a new version of the Perfect Keyboard is installed then the macro files created in previous version are
backed up when they are open in new version. The backup file is located in the same folder as the
original file and its name has "_backup_of verXXX" suffix (for example,

"MyMacros_backup_of ver862.4pk).

Previous Save File Backup

When macro file is saved then the current macro file is backed up before the new content is actually
saved. So there are two latest versions of the macro file always available. The previous version of the
macro file has the same name and .4pk.pre_XXX extension (for example, MyMacros.4pk.pre_862).
Both versions of the file are located in the same folder.

http://www.perfectkeyboard.com

Program Settings

There are several program settings user can configure. The settings apply to all open macro files.

o General Settings

« Keyboard Settings

o Startup Files

http://www.perfectkeyboard.com

Program Settings >

General
General Program Settings >
o Hot keyS: General Keyboard Macro Toolbars Startup Files
Hot keys
Select the hot-key you want to All macros list None
. . . " Start/stop macro recording Hone
setinthe listand click "Set Show/fHide main window Hone
Hotkey..." button Enable/Disable Triggers Hone
Set Hotkey... Clear Hotkey

e All macros list - hot key
that brings up window with list

Play sound when executing macro

of all macros Control speed of macro keystrokes [number of keystrokes to send] /
' [number of milliseconds to wait]:

« Enable/Disable s | [d |

Trig g ers - hOt key to Send macro text to target application on macro playback:

enable/disable macro Using clipboard v

triggers.

|_] Do mot show macro exacution progress window

° Start / stop macro [] Log macro execution
recording - hot key to [] Auto-save

[] Automatically detect new version avallable
start/stop macro recording.
More ... Days & Months Names ...

e Show /hide main
window - hot key to show or |7] Reload when change is detected
hide main window. [] Confirm reloading

Reload macro files changed from outside

Play sound when executing

macro - if checked, defined sound Cancel Help

(.wav file) is played when macro is
started. A dialog box to define sound file is shown when the unchecked option is changed to
checked. If no sound file is defined then a default sound is played.

Control speed of macro keystrokes sending

This option allows to control speed of keystrokes sending to target application. User may need to
modify this option if, for example, macros are mostly run in target applications running on a
remote machine accessed using remote desktop connection (or Citrix). In such case if
keystrokes are send too fast then some of them can get lost. This option allows to define the
number of keystrokes and a delay in milliseconds to wait with sending other keystrokes. For
example, if the number of keystrokes is 25 and the delay is 20 then if there is a macro that is
sending bigger amount of keystrokes then after each 25 keystrokes executed there will be 20
milliseconds delay.

Send macro text to target application...

This option allows to choose how simple macro text is inserted into the target application. If "As
keystrokes" is selected then the simple macro text is sent to the target application (such as word

http://www.perfectkeyboard.com

editor) as a set of keystrokes the same as if the text is typed on keyboard.

If "Using clipboard" option is selected then the macro text is copied to the clipboard first and then
itis pasted to the target application the same as if the user hits Ctrl+V key combination. The
Perfect Keyboard has no control on the target application. It can happen that the paste operation
takes in the target application longer then expected and a subsequent macro that is eventually
run precede the paste operation completion and cause unexpected result. To prevent this it is
possible to set a delay in milliseconds that prevents other macros or commands to execute. This
slows down the macro execution but increases the reliability.

Do not show macro execution progress window - if checked, the macro execution progress
window is not showing.

Log macro execution - if enabled, macro execution information is added to the log.txt file. The
file is available from the "View/Show Log File" main menu item. The log file collects macro
execution start time, finish time, and errors that occur during the macro execution.

Auto-save - if checked, the changes made to macro file are automatically saved every couple

minutes. In addition, all changes are automatically saved on program shutdown (without showing
"Do you want to save..." dialog box to user).

Automatically detect new version available - if this option is enabled, the program connects
to its home page and detects a new version availability.

Reload macro files:

Reload when change is detected - if a change in a macro file is detected, the macro file is
automatically reloaded so that users always have the most recent version of the macro file laoded.

Confirm reloading - if checked, the user is asked to confirm macro file reload.

More options button:
More options are

Program Settings X
available on [More...]
button: [Juse list box (not menu) to select from macros with the same trigge Columns
' (100 not show "macro execution stopped” message if user stops macre Maao name
D Do not show "Macro is paused” window when macro is paused T”
1 ggers
Use listbox to select from | = 4ae ctart minimized to tray] Mocro
macros with the same (] Start on Windows Startup [] Disabled
trigger - It is possible to define s # [Description
Order

multiple macros with the same | L Protect macro file by AES encryption
trigger. This optiontells if list Preserve dipboard content during/after macro execution

1000
box or menu should be used to - .
select what macro will run. [+] Auto-format macro: Command per line

Do not show "Macro

execution stopped” concel
message... - It is possible to stdp macro execution using "Shift+Esc" hot-key. By default, if the
macro is stopped this way, a message is shown to user. This option allows to disable the
message.

Do not show "Macro is paused" window... - if checked, a message that macro is paused is
not showing.

Always start minimized to tray - if checked, the program always starts minimized to the Task
bar tray icon. Otherwise the program starts in the same position as it was before exiting.

Start on Windows Startup - if checked the programs automatically loads on Windows startup.

e As Admin -if checked the program starts with admin privileges. This is a recommended

option since some software (such as browsers) often blocks the keyboard triggers (such
as text shortcuts) if the Perfect Keyboard is not running with the admin privileges.

Protect macro files by AES encryption - if checked, then all macro files content is encoded
using AES algorithm for better security of the data saved in the macro file.

Preserve clipboard content...

If "Using clipboard" option is selected in "Send macro text to target application..." above then
clipboard is used to send simple macro text to target application which causes the clipboard
content is modified. This option allows to preserve the clipboard content so that after a macro
execution is finished the clipboard content is restored to be the same as it was before the macro
execution was started. It is possible to set the delay in milliseconds how long the Perfect
Keyboard is waiting before the clipboard content is restored. If the delay is too short then it can
happen that before the target application is able to react to Ctrl+V paste operation the clipboard
is restored and the original clipboard content is inserted to target application instead of the
macro text. If the delay is too long then if user wants to paste clipboard data immediately after
executing a macro the macro text is again pasted instead of the original clipboard content. A
value in range 1000 (1 second delay) to 3000 (3 seconds delay) should work fine in most cases.

Auto-format macro: Command per line - if checked, the macro - when edited as "Macro
Steps" - formats the macro text so that there is one macro command per line. The formatting is
applied when switching from "Macro Steps" tab to "Macro Text" tab.

Program Settings >

Keyboard

Keyboard Program Settings b

Expand key - check the keys you
want to use to start text shortcut
expansion. (The keys that need to be

General Keybeard Macro Toolbars Startup Files

hit after a text shortcut is typed) b ey e %igi‘;:“ -
Do not delete expand key - if %

H NOTE: Text shortcut may not contain any !
CheCked the expand key IS not character you check here as an expand key. j ;
deleted. j] :

/
Text shortcut recognition break [T Y
characters -the characters listed .
h th t of text shortcut Text shorteut recognition break characters:
ere cannot be part of text shortcut. |

This means that text shortcut
recognition is restarted when such Hints vandow
character is typed. Some keys Jump to hints window hot-key:
causes this automatically (for | A
example, page Up, page down,.t.ab, [visable text shortcuts and auto-complete hints
arrow keys, enter, etc.) but additional [Disable hotkey hints

characters can be specified here.
For example, we have "sct" text
shortcut. When typing "(sct " the "sct"
shortcut is correctly expanded only if
the "(" character is listed in "non-text
shortcut characters" field.

Hints Window

e Jump to hints window

hot-key Cancel Help

Hot-key that allows to jump to

showing hint window to navigate among items listed. "Alt+." is the default hot-key.

e Disable text shortcuts and auto-complete hints
There is a small window that appears any time when the user is typing a text that (partially)
matches defined text shortcut or auto-text. The window contains all the auto-text items and
text shortcuts that are in the scope of the window (application) the user is typing in. The
best fitting item is being preselected in the list and user can start it by pressing "Alt+Right
Arrow" key combination. The user can also jump into the hints window using a user
defined hot key (see above) and navigate in the list using "Up" and "Down" keys.

[] I this disable option is checked then the hints window is not showing.

http://www.perfectkeyboard.com

Disable this hints wmdm-.rD

i+ anything A
ms Bug - reproduced

pct phcture

qut Quote valid through

smb gymbols

&yl Quata Email

thi teams "

Hit "Alt+Right™ to run or "Alt+." to browse

Disable hot-key hints

This is the same small window as described above. It appears any time user presses a
control key (for example "Ctrl" key) and such key is part of a macro hot-key available (in.
scope) in the currently active application. Again, all available hot-keys are listed and best
fitting one is preselected.

[] I this disable option is checked then the hints window is disabled and is not showing.

Program Settings >

Startup Files

Startup Files

These options allow to define what macro
files are automatically loaded when the
Perfect Keyboard starts.

Load the last open files

If this option is checked then the files
that were open before the program
was shutdown or Windows were
shutdown are open.

Load the specified files

If this option is checked theniitis
possible to specify the files that will
be automatically open when the
program is started. "Add" button
allows to add a new macro file. Ifitis
needed to specify a path relative to
the default macro file location

Program Settings

General Keyboard Macro Toolbars Startup Files

E].und the last open fileg

[JLoad the specified files

C:\Users\petr\Documents\MacroT oohworksFiles\MacroFiles\SampleMacros...

MyMacros.4tw

("C:\Users\<sUSERNAME>\Documents\PerfectKeyboardFiles\MacroFiles" - see more here) then
after a macro file is added using "Add" button hold mouse down on the newly added record (or
use F2 key) and then edit the record appropriately (for example, change the record to
"CorporateMacros\letterTemplates.4pk" in order to have open macro file
"C:\Users\sUSERNAME>\Documents\PerfectKeyboardFiles\MacroFiles\CorporateMacros\letter

Templates.4pk".

The macro files are open in the same order as defined in the list. Use "Up", "Down" buttons to
change order of the macro files if needed.

http://www.perfectkeyboard.com

Security

There are several areas related to user data security:

« Lock for Editing
« Password Protection
o File Data Security

http://www.perfectkeyboard.com

Security >

Lock for Editing

Each macro file can be locked for editing so that changes in the file can be made only if the correct
password is provided. This can be used to prevent macro file from changes when macro file is shared
among multiple users. To lock the macro file use "File/Lock for Editing" menu command in the main
window.

http://www.perfectkeyboard.com

Security >

Password Protection

It is possible to password protect macros so that no one who doesn't know the password can see the
macro definition, edit it or runit. The password protection is implemented on the group level. This
means that user defines password for the given group and all the macros from this group are password
protected. To define password, go to the macro group properties window and click "Password" button.

e Password

Password XK
Insert here the password to use.
Plasswnrd: Password Protect
o Confirm Password Unprotect
. Confirm Password:
Type the password to use again here.
Cancel
N Always Require password to edit macro
If selected, the password is always required () Always
to edit macro. (@ When there was not an activity for: | 1 minute(s)

« When there was not... [] Do not require password to run macros
If selected, the password is only required to

use or edit macro if user did not run or edit a macro for specified amount of minutes.

« Do notrequire password...

If checked, the password is not required to run macros (the password is only required to edit
macros).

« Password Protect
When this button is clicked then the dialog box is closed and the configured options are applied.

o Unprotect
When this button is clicked then the password is not required anymore.

http://www.perfectkeyboard.com

Security >

File Data Security

The file is encrypted using in-house encryption technology so that its content cannot be viewed in any file
viewer or other program. In addition, the "Professional” edition of the program also allows to encrypt
macro file data using AES industry standard cryptography algorithm. The AES encryption is indicated by
"AES:Yes" in lower-right area of the main window.

http://www.perfectkeyboard.com

Installation

The program installation related information:

o Default installation folder
o Silent Install
e Install on Shared Drive

http://www.perfectkeyboard.com

Installation >

Default Installation Folders

Program Installation Folder

Since the program version 8.2.0, the program is by default installed to the 32-bit Program Files folder
(typically "C:\Program Files" on 32-bit Windows and "C:\Program Files (x86)" on 64-bit Windows).

User Data Folder

Since the program version 8.2.0, the user program settings and macro files are stored in
"PerfectkKeyboardFiles" folder in user documents folder (typically
"C:\Users\<USERNAME>\Documents\PerfectKeyboardFiles"). This folder is created automatically
when the program is executed for the first time after installation. The macro files (for example the demo
file) are by default located in "MacroFiles" sub-folder, however, they can be saved to any other location
using "File/Save as" menu command.

http://www.perfectkeyboard.com

Installation >

Silent Install

The installation program accepts optional command line parameters that can be useful to system
administrators to silently install the program.
ISILENT

Instructs installation program to be silent. When installation is silent then the wizard is not displayed
but the installation progress window is showing on the screen. Error messages (if any) are displayed
as well as startup prompt (if it is not disabled by the '/SP-' explained above).

NVERYSILENT
The same as '/SILENT above, just without installation progress window showing.
ISUPPRESSMSGBOXES

Instructs installation to suppress message boxes. It has effect when combined with '/SILENT" or
''VERYSILENT".

The default response in situations where there's a choice is:
o Yes in a 'Keep newer file?' situation.
o No in a 'File exists, confirm overwrite.' situation.
o Abort in Abort/Retry situations.
o Cancel in Retry/Cancel situations.

o Yes (=continue) in a
DiskSpaceWarning/DirExists/DirDoesntExist/NoUninstallWarning/ExitSetupMessage/Confir
muUninstall situation.

ILOG

Instructs installation to create a log file in the user's TEMP directory detailing file installation and
[Run] actions taken during the installation process. The log file is created with a unique name based
on the current date.

/LOG="filename"

The same as /LOG above, except it allows to specify a fixed path/filename to use for the log file. If a
file with the specified name already exists it will be overwritten. If the file cannot be created, Setup
will abort with an error message.

INOCANCEL
Prevents the user from aborting installation process.

ICLOSEAPPLICATIONS

Instructs installation to close the program if it is running.

http://www.perfectkeyboard.com

/RESTARTAPPLICATIONS
Instructs the installation to restart the program if possible.
INORESTARTAPPLICATIONS

Prevents Setup from restarting applications. f RESTARTAPPLICATIONS was also used, this
command line parameter is ignored.

/DIR="c:\dir"

Overrides the default installation directory. A fully qualified pathname must be specified.
IGROUP="Group name"

Overrides the default group name.
INOICONS

Instructs installation not to create desktop icon.

Installation >

Install on Shared Drive

The program can keep multiple users settings while it is installed on a shared drive and all users starts
the program from the shared drive. This feature allows multiple users to share one installation and
minimize maintenance effort for corporate administrators (makes upgrading easy even if there are many
users on the net).

Information about all the users is stored in the users.ini file that resides in the same directory where the

product is installed. The file is a text file that can be edited by any raw text editor like Notepad. The file
structure is as follows:

[header]
num_of users=2

[1]
name=oscar
path=\\server\users\oscar

[2]
name=debie
path=\\server\users\debie

Note: The path name may not end with \ character! The [1], [2], etc., sections have to start by [1]
and end by [num_of _users]. The number of users is limited by your license.

Starting Program

There are two ways how to start the program on user work station with user's settings loaded:

1. PATH_TO_THE PROGRAM luser:?
Where the PATH_TO_THE PROGRAM is full path to the software executable. When the
program starts with this "/user:?" parameter a login dialog expecting user name (from the
users.ini file above) to be inserted appears.

2. PATH_TO_THE PROGRAM /user:USER_NAME
Where the PATH_TO_THE PROGRAM is full path to the software executable and
USER_NAME is the user name from the users.ini file above. This will start the program
without any login dialog.

Adding New User
To add new user follow these steps:

1. Create new user's directory where the program can save settings and data files. You

http://www.perfectkeyboard.com

can create a copy of the "UserDir-Template".
2. Increase the number of users in [header] section in users.ini file.

3. Add new user section (for example, [10] if there are ten users) and specify users name
and the user's directory path (as per 1 above):

[10]
name=hugo
path=\\server\users\hugo

4, On the user's workstation, create a link to the executable command line as described in
"Starting Program" section above.

Drag & Drop

Drag & Drop operation is supported across the program. It can be used to:

« Change macro groups structure
o Change order of macros in the macros list

Move/copy macro from the list to other macro group
Move macro commands in macro steps editor

http://www.perfectkeyboard.com

Log file

The program is logging activities (such as what macros were running, macro failures, etc.) to a text log
file. The log file can be open using "Show/Log file" menu command. It is possible to enable/disable

logging in "Program Settings".

http://www.perfectkeyboard.com

HTML Export/Print Macros

There is not a print command itself build in the product. Instead, it is possible to export whole the macro
file content to an HTML using "File/Export to HTML" menu command. The exported file then can be

viewed in a web browser and printed from there.

Exportto HTML.:
o« HTML File - Generated HTML file name (path).

« Include macro content - if checked, also macro steps (macro text) is included to the HTML

output.

o Selected group only - if checked, only macros from currently selected group are exported to the
HTML file. Otherwise whole the macro file content is exported.

http://www.perfectkeyboard.com

Generate Free Macro Player / EXE File

In the Professional edition of the software, it is possible to generate Free Macro Player macro file or an
executable file (.exe) that can be distributed to other users so that they can use macros without a need to
have Perfect Keyboard installed. The file is generated from the macro file that is currently active (the
selected Macro File Tab). There are these options:

1. Generate Free Macro Player file (.fmp)

Users need to have Free Macro Player software installed to be able to use the generated .fmp. The
Free Macro Player is free of charge for all users (including business use) and it can be freely
redistributed.

2. Generate Executable File (.exe)

An executable (.exe) file is generated. When the executable is run then it behaves so that Free Macro
Player is started with the macro file loaded. It is the same as if user installs Free Macro Player and
opens the file generated from options #1 above.

o Password
It is possible to protect the generated file using password.

e Program Settings
Program settings can be set for the generated .exe.

o Package all files
If checked then whole folder (including sub folders) where the macro file is located is packaged
within the generated .exe file. This allows to easily distribute additional data needed in macros.

3. Generate Executable File (.exe) that runs a single macro
This options allows to generate an executable (.exe) file that runs just one selected macro.

o Password
It is possible to protect the generated file using password.

e Program Settings
Program settings can be set for the generated .exe.

e Macroto run
Insert the name of the macro that will be run when generated .exe file is executed.

« Package all files

If checked then whole folder (including sub folders) where the macro file is located is packaged
within the generated .exe file. This allows to easily distribute additional data needed in macros.

http://www.perfectkeyboard.com
https://www.pitrinec.com/products/free-macro-player

Build-in Hotkeys

The program has built-in hot-keys:

Hotkey Action

Ctrl+N Create new macro file.

Ctrl+O Open a macro file.

Ctrl+S Save changes made to currently opened macro file.
Ctrl+C Copy.

Ctrl+Vv Paste.

Del Delete selected macro(s)/group.

Ctri+F Show list of all defined macros.

F3 Find text in the macros.

Ctrl+l Add macro.

Ctrl+L Add clipboard macro.

Ctri+T Create new macro from template.

Ctr+R Record new macro.

Ctr+D Add group.

Ctri+G Run selected macro.

Ctrl+A Select all macros (in the macro list pane).

Ctrl+P Open main settings dialog box.

Alt+E Edit the current command (in macro text editor pane).
Alt+A Add currently selected command (in commands and system variables tre¢
F11 Maximize/Restore macro steps editor.

Alt+D Swap to macro steps editing.

Alt+R Swap to macro text editing.

Alt+O OK & save changes made in macro editor.

Alt+C Cancel & disregard changes made in macro editor.
Alt+right arrow Jump to next command (in macro text editor).
Alt+left arrow Jump to previous command (in macro text editor).

Alt+up arrow
Alt+down arrow
Ctrl+Page Down
Ctrl+Page Up
F5

F10

F9

Jump to previous macro.

Jump to next macro.

Switch between tabs in macro editor.

Switch between tabs in macro editor.

Start macro debugging.

Execute next command (in debugging mode).

Show variable content view window (in debugging mode).

http://www.perfectkeyboard.com

78

Icons Overlay Images

There are little icons that indicate some specific state of a macro or macro group:

Icon Meaning

| Macro or macro group has defined scope - macro triggers run only defined set of applicat
Q@ Macro or macro group is disabled.
n Macro group is password protected.

http://www.perfectkeyboard.com

API's for External Programs/Scripts Interaction

There are several options how other programs and scripts can interact with the Perfect Keyboard
Professional edition (or Free Macro Player).

e HTTP API
« Command Line Executable
e Windows Script (WScript)

http://www.perfectkeyboard.com

API's for External Programs/Scripts Interaction >

Http API

The Perfect Keyboard Professional edition (and Free Macro Player) program supports (starting version
9.2.0) an HTTP API. It allows other programs to set or retrieve a value of an application global variable
(the one that starts with "ga_" prefix - see more here - or a system variable - see more here), and start
an existing macro and retrieve its result.

HTTP Ports

The program starts an HTTP server that listens (for localhost/ 127.0.0.1 only) for HTTP requests on the
following ports:

Program Ports

Perfect Keyboard (29592 - primary port
40804 - secondary port if the primary port is in use by other program
45054 - other port if the primary and secondary port is in use by other program

Free Macro Player (29593 - primary port
40805 - secondary port if the primary port is in use by other program
45055 - other port if the primary and secondary port is in use by other program

The actual port (most likely primary port) used by the program is logged in the log file.

HTTP APl Commands

Command Description

getver Returns version of the program listening on the given port (such as "9.2.0").
http://127.0.0.1:29592/getver

getname Returns the name of the program listening on the given port (such as "Macro Toolwc
http://127.0.0.1:29592/gethame

getvar Returns the variable value.

http://127.0.0.1:29592/getvar?name=<VARIABLE_NAME>
« VARIABLE_NAME - a string that specifies an existing global application scc
"ga_" prefix) or a system variable. It can be also an array element (for examp

Example: http://127.0.0.1:29592/getvar?name=_vClpText
This request will retrieve the text currently stored in the clipboard.
setvar Sets the variable value. The request returns "1" on success or "0" if it fails.
http://127.0.0.1:29592/setvar?name=<VARIABLE_NAME>&value=<NEW_VAI
« VARIABLE_NAME - a string that specifies an existing global application scc
"ga_" prefix) or a system variable. It can be also an array element (for examp
« NEW_VALUE - a string that will be assigned as a value to the variable.

Example 1: http:/127.0.0.1:29592/setvar?name=ga_Temperature&value="97"
Example 2:
http://127.0.0.1:29592/setvar?name=ga_CustomerName[0]&value="John J. Jame
http://127.0.0.1:29592/setvar?name=ga_CustomerName[1l]&value="Marion M. M

http://www.perfectkeyboard.com

runmacro Runs an existing macro. Waits until the macro finishes and returns its result.
http://127.0.0.1:29592/runmacro?name=<MACRO_NAME>¶m=<PARAMI
« MACRO_NAME - a string that specifies a name of the existing macro.
« PARAMETER - a string that will be passed to the macro as the parameter.

Example:
Let's have a macro named "httpTest":

<msg>(-100,-100,"httpTest: %_vMacroParameter%","",1,0,0,0)<#>
<varset>("_vMacroResult=Goodbye","")

Let's make this request:
http://127.0.0.1:29592/runmacro?name=httpTest¶m=Hello

The macro will be called. It will display a message box with "Hello" text. When the
request returns "Goodbye".

The API supports UTF-8 encoding.

C# HTTP Client Code Example

namespace HttpClientCSharp
{

class Program

{

static async Task Main(string[] args)

{

using var client = new HttpClient();
var value = await
client.GetStringAsync("http://127.0.0.1:29592/getvar?name=ga_vMyVariable");

Console.WritelLine(value);

API's for External Programs/Scripts Interaction >

Command Line Executable

The Perfect Keyboard Professional edition (and Free Macro Player) comes with MtwProxy.exe
command line executable. It provides other programs or scripts access to the variables and macros in
running Perfect Keyboard. Other programs can use MtwProxy.exe to set or retrieve a value of an
application global variable (the one that starts with "ga_" prefix - see more here - or a system variable -
see more here), and start an existing macro and retrieve its resullt.

MtwProxy.exe Command Line APl Commands

Command Description
getver Writes version (such as "9.2.0") of the Perfect Keyboard Professional edition (or Fr
standard output.
MtwProxy.exe getver
getname Writes program name (such as Perfect Keyboard) to the standard output.
MtwProxy.exe getname
getvar Retrieves a variable value and writes it to the standard output.
MtwProxy.exe getvar <VARIABLE_NAME>
« VARIABLE_NAME - a string that specifies an existing global application scc
"ga_" prefix) or a system variable. It can be also an array element (for examp
Example: MtwProxy.exe getvar _vClpText
This call will the text currently stored in the clipboard to the standard output.
setvar Sets the variable value and writes "1" (on success) or "0" (on fail) to the standard ot

MtwProxy.exe setvar <VARIABLE_NAME> <NEW_VALUE>
« VARIABLE_NAME - a string that specifies an existing global application scc
"ga_" prefix) or a system variable. It can be also an array element (for examp
« NEW_VALUE - a string that will be assigned as a value to the variable.

Example 1. MtwProxy.exe setvar ga_Temperature 97
Example 2:

MtwProxy.exe setvar ga_CustomerName[0] "John J. James"
MtwProxy.exe setvar ga_CustomerName[1] "Marion M. Marr"

http://www.perfectkeyboard.com

runmacro Runs an existing macro. Waits until the macro finishes and writes its result to the sta
MtwProxy.exe runmacro <MACRO_NAME> <PARAMETER>

« MACRO_NAME - a string that specifies a name of the existing macro.

« PARAMETER - a string that will be passed to the macro as the parameter.

Example:
Let's have a macro named "cmdTest":

<msg>(-100,-100,"Http Test: %_vMacroParameter%",",1,0,0,0)<#>
<varset>("_vMacroResult=Goodbye","")

Let's run this command in Command Line window:
MtwProxy.exe runmacro cmdTest Hello

The macro will be called. It will display a message box with "Hello" text. When the
"Goodbye" is witten to the Command Line window.

The data written to the standard output is in UTF-8 encoding. The executable returns O on success or -1
on error. You need to manually add path to the MtwProxy.exe to your "Path" environment variable if you
want to use the MtwProxy.exe without the full path in scripts (as shown in the example below). The default
pathis c:\Program Files (x86)\Perfect Keyboard\Bin (or c:\\Program Files (x86)\Free Macro Player\Bin).

Example (.bat)
Let's have a macro named "cmdTest":

<msg>(-100,-100,"cmdTest: %_vMacroParameter%","",1,0,0,0)<#>
<varset>("_vMacroResult=Goodbye","")

Let's run this .bat file in Command Line window.
@echo OFF

for /F "delims=" %%a in ('MtwProxy.exe runmacro cmdTest "Hello, World!"') do set
result=%%a

IF %ERRORLEVEL% NEQ © (
@echo FAIL
EXIT /B

)

@echo %result%
@echo OK

Result: The macro will be called. It will display a message box with "Hello, World!" text. When the
message box is closed text "Goodbye" is echoed in the Command Line window.

API's for External Programs/Scripts Interaction >

Windows Script (WScript)

The Perfect Keyboard Professional edition (and Free Macro Player) comes with an Mtw.Proxy
Windows Scripting object. It provides access to the variables and macros in running Perfect Keyboard.
JScript or VBScript scripts can use MtwProxy object to set or retrieve a value of an application global
variable (the one that starts with "ga_" prefix - see more here - or a system variable - see more here),
and start an existing macro and retrieve its result.

Mtw.Proxy Object APl Commands

Command Description

GetVer() Returns version (such as "9.2.0") of the Perfect Keyboard Professional ed
var mtwProxy = WScript.CreateObject(" Mtw.Proxy");
var version = mtwProxy.GetVer();

GetName() Returns program name (such as Perfect Keyboard).

var mtwProxy = WScript.CreateObject(" Mtw.Proxy");
var name = mtwProxy.GetName();

GetVar(VARIABLE_NAME)

Returns a variable value.
var mtwProxy = WScript.CreateObject(" Mtw.Proxy");
var value = mtwProxy.GetVar(VARIABLE_NAME);
 VARIABLE_NAME - a string that specifies an existing global applic
"ga_" prefix) or a system variable. It can be also an array element (f

SetVar(VARIABLE_NAME,
NEW_VALUE)

Sets the variable value and returns "1" (on success) or "0" (on fail).
var mtwProxy = WScript.CreateObject(" Mtw.Proxy");
var success = mtwProxy.SetVar(VARIABLE_NAME, NEW_VALUE);
« VARIABLE_NAME - a string that specifies an existing global applic
"ga_" prefix) or a system variable. It can be also an array element (ft
« NEW_VALUE - a string that will be assigned as a value to the varial

RunMacro(MACRO_NAME,
PARAMETER)

Runs an existing macro. Waits until the macro finishes and returns its result
var mtwProxy = WScript.CreateObject(" Mtw.Proxy");
var result = mtwProxy.RunMacro(MACRO_NAME, PARAMETER);
« MACRO_NAME - a string that specifies a name of the existing mac
« PARAMETER - a string that will be passed to the macro as the pare

The API parameters and return values are in the UTF-8 encoding. If you use a portable package (you
download .zip package and not a .exe installer) then you need to manually register the MtwObj32.dll
(32-bit) and MtwObj64.dll (64-bit) in order to make the Mtw.Proxy object work in WScript scripts. The
dil's are by default located in c:\\Program Files (x86)\Perfect Keyboard\Bin (or c:\\Program Files

(x86)\Free Macro Player\Bin).

Example:

Let's have a macro named "wsTest":

http://www.perfectkeyboard.com

<msg>(-100,-100,"wsTest: %_vMacroParameter%","",1,0,0,0)<#>
<varset>("_vMacroResult=Goodbye","")

Let's run this JScript:

function MtwProxySample()

}

MtwProxySample();

The macro will be called. It will display a message box with "Hello" text. When the message box is
closed text "Goodbye" is showed in the JScript pop up window.

Commands & Syntax

e Macro Syntax Basic

e Macro Command Syntax

e« Macro Variables

e System Variables

« Expressions & Time Calculations

e Commands

http://www.perfectkeyboard.com

Commands & Syntax >

General Macro Syntax Basics

The simplest general macro is just a free text like "Hello World!". When the macro is played back, either
(i) sequence of keystrokes representing this text is sent so that the text is "typed" to the target
application (application that is active - i.e., receiving keyboard focus) or (ii) the text is placed to
clipboard and is pasted to the active application by Ctrl+C hot-key shortcut (the active application must
support such "paste” operation). It is configurable in macro as well as in program settings if keystrokes
or clipboard is used. Such simple macros are used to quickly insert often used pieces of text (phrases,
e-mail addresses, paragraphs, etc.) to different applications and documents. However, macros can also
contain useful commands. If there is a command within the macro then it is automatically recognized
and executed. Commands have its special syntax that looks like this:

<some_command>("param1", param2, ...)
An example of macro that combines a free text is as follows:
Tomorrow - <date>(21,"/",1,1,0,"") - we are going to...

The macro is presented and editable in this textual format if "Macro Text" is selected in macro editor. If
"Macro Steps" is selected then the macro is presented and edited as a sequence of steps like this:

1 Tomormow -

3 -we are going to...

It depends on the Perfect Keyboard usage - mostly used as text replacement utility or mostly used to
write complex macros with many commands - what is the more appropriate way how to edit macros - as
Macro Text or Macro Steps.

Note: There is a command <cmds> ("Macro execution: Ignore free text, execute ONLY
COMMANDS") causing that only macro commands are executed and any other text (including new
lines) is ignored.

http://www.perfectkeyboard.com

Commands & Syntax >

Macro Command Syntax

There are commands without parameters and commands that can have parameters.

Commands Without Parameters
Macro commands without parameters have this syntax:

<command_without_parameters>
An example can be "<clpempty>" that clears clipboard content.
Note: Keyboard keys such as "Page Down" have also the same syntax (<pgdn>), however, if <cmds>
command ("Macro execution: Ignore free text, execute ONLY COMMANDS") is in effect then the
keys are not played back.

Commands With Parameters
Macro commands with parameters have this syntax:

<command_wit_parameters>("paraml”, param2, ...)

Command parameter can be:

1. Static text (constant)
2. Variable

3. Combination of a static text and variables. Variable used in a combination with static text

must be enclosed in % chars (“a text %ovWariable% text continues...). For example, to create a file
with name based on the current date you can use this:

<filecreate>("“c:\myfiles\%_vCurrDate Year%-%_vCurrDate_ MM%-%_vCurrDate_DD%.doc”,0).
This will create c:\myfiles\2000-08-19.doc file.

4. Expression

Specific Parameters
There are commands that takes parameters that have specific syntax.

HWND This type of parameter identifies an application window. Windows-spe«
as <actwin> takes this type of parameter. HWND is a unique handle W
to identify each window. The HWND can be retrieved by some comma
<win_enumerate>) or is provided by some system variables

(_vKeybdFocusWindow_HWND, vActiveWindow_HWND, _VActiveW
While some other window attributes like window title or window class a
can be other windows with the same title or class) the HWND is unique

http://www.perfectkeyboard.com

Window Identifier Path (WIP)

Window Identification Path (WIP) is a sequence of information that allo
Window. The WIP is used as a parameter for many windows command
<win_findimage>, <win_captureimage>, <winclose>, etc. The user doe
WIP manually when editing a window command in visual editor. The us:
cursor on the window he/she wants to use and the WIP is created autor
contains a hierarchical structure (parent/child) of the windows. Each wir
window title, window class and X, Y position (X,Y position is used for w
only if there are multiple windows with the same window title and windo

It is possible to use wildcards (* and ?) within a WIP. There are exampl
window is activated:

<actwin>("[A*.txt - Notepad|Notepad[#0}#0]",0,0,"no")
- this command activates Notepad windows with titles such as "Audrey.
"Aaron.txt - Notepad", "Abbey.txt - Notepad"

<actwin>("[B*.txt - Notepad|Notepad|#0}#0]",0,0,"no")
- this command activates Notepad windows with titles such as "Bred.tx
"Boris.txt - Notepad", "Bradley.txt - Notepad"

<actwin>("[*.txt - Notepad|Notepad|#0}#0]",0,0,"no")
- this command activates Notepad windows with titles such as "Audrey.
"Bradley.txt - Notepad", "Jane.txt - Notepad"

<actwin>("[Untitled - Notepad|Notepad|#0}#0]",0,0,"no")
- this command activates only Notepad window with title "Untitled - Note

<actwin>("[*Notepad|Notepad|#0}#0]",0,0,"no")
- this command activates Notepad windows with titles such as "Audrey.
"Untitled - Notepad", "page.html - Notepad"

XmIDocumentHandle

This is a uniqgue number that identifies an open Xml file. It is obtained a
Xml related commands.

XmlElementHandle

This is a unique number that identifies an Xml document element. It is ¢
some Xml related commands.

Workbook Identifier

This is a unique number that identifies an open Excel workbook. It is ok
some Excel related commands.

Commands & Syntax >

Macro Variables

Variables
There are these types of variables:

e« Macro local variables - The variable name can be any string (characters such +, -, \, /, <, >, ¥,

5 (;), [] cannot not be used) and the variable scope is only in a single macro. The macro variable
is enclosed in % like in this example:

Customer name: %varCustName%; Customer phone: %varCustPhone%

e Global variables - there are two types of global variables that differ by scope:

- macro global variable - the variable is known in all the macros (called from each other using
<run>command) during the macro execution. The macro global variable must begin with the
"gm_" prefix (for example, "gm_varName").

- application global variable - the variable is known during the whole application session (the
value is remembered until the program is closed). The application global variable must begin with
the "ga_" prefix (for example, "ga_varCurrentProject").

o System variables - the variables provide system dependent information and typically are
read-only.

« Procedure Parameters - if a procedure parameter starts with "par" prefix (for example,
"parlnputText") then the parameter is local only within the procedure. Otherwise the parameter is
either macro local or global as described above.

o« Local procedure variables - if a variable defined within a procedure starts with "Ipv" (local
procedure variable) prefix (for example, "lpvTemporaryVariable") then the variable is known and
can be accessed only within the procedure.

Variable Array

Any variable (except system variables) can be used also as an array without any special declaration.
For the array, this syntax is used:

varVariableName[index].

For the multiple dimension arrays this syntax is used:

Array variables do not have a value assigned automatically. Until the user assigns a value to a given
variable (for example, using <varset>("vName[10]=John","") command) the variable value does not
exist. This can be detected using "_vDoesVariableExist VARNAME" system variable
(_vDoesVariableExist vName[10] from our example). The system variable

" vDoesVariableExist VARNAME" contains O if the variable does not exist or 1 if it does.

Environment Variables
The program also recognizes Windows system environment variables such as %ProgramFiles% and

http://www.perfectkeyboard.com

such environment variables can be used in macros.

Commands & Syntax >

System Variables

System variables provide information that can be used in macro. System variables content is set by
program automatically and cannot be changed.

List of system variables:
Window Related

_VActiveWindow
_VActiveWindow_HWND
_VActiveWindowChild

VActiveWindowChild HWND

_VActiveWindowPrev
_VActiveWindowPrev_HWND

_VWinFromMouseCur
_VWinFromMouseCur_HWND

_vChildWinFromMouseCur
_VvChildWinFromMouseCur_HWND
_VvKeybdFocusWindow
_vKeybdFocusWindow_HWND
_VvKeybdFocusControl
_vKeybdFocusControl_HWND

_VWWinRectX1, VWinRectY1,
_WVinRectX2, VWinRectY2,
_VWinWdit,

_VWinHgt,

_VWinTitle,

_VWinState,

_VWinActive,

_WVinClass,

_VWIinHWND

_vMonitorCount
_VvMonitorPrimary
_vMonitorWorkAreaX_MNum

Title of the currently active window.
HWND of the currently active window.
Title of the currently active child window (dialog box, toolbox, do

HWND of the currently active child window (dialog box, toolbox, (
Title of the previously active window.

HWND of the previously active window .

Title of main window with mouse over.
HWND of main window with mouse over

Title of child window (dialog box, toolbox, document window) wit|
HWND of child window (dialog box, toolbox, document window)
Title of the window that is currently receiving keyboard input.
HWND of the window that is currently receiving keyboard input.
Title of the window control that is currently receiving keyboard iny
HWND of the window control that is currently receiving keyboard

Attributes of the window retrieved using <wininfo> command.

Number of monitors

Primary monitor number (1 or higher).

Upper left X coordinate of a monitor work area. (Replace MNur
such as 1 -_vMonitorWorkX_1)

http://www.perfectkeyboard.com

_vMonitorWorkAreaY_MNum
_vMonitorWorkAreaCX_MNum
_vMonitorWorkAreaCY_MNum
_VvMonitorScreenX_MNum
_VvMonitorScreenY_MNum
_VvMonitorScreenCX_MNum
_VvMonitorScreenCY_MNum

Date & Time Related

_VCurrDate_DefaultShort
_VvCurrDate_DefaultLong

_VvCurrDate_Day

_VvCurrDate_DD

_VvCurrDate_DayName

_VvCurrDate_DayOfWeek

_VvCurrDate_Month

VvCurrDate MM

_VvCurrDate_Year

_VvCurrDate_YY

_VvCurrDate_MonthName

VvCurrDate DDMMYYYY

VvCurrDate MMDDYYYY

_VCurrTime_Hourl2

_VCurrTime_Hour24

_VCurrTime_Minute

_VCurrTime_Second

Upper left Y coordinate of a monitor work area.
Width of a monitor work area.

Height of a monitor work area.

Upper left X coordinate of a monitor screen.
Upper left Y coordinate of a monitor screen.
Width of a monitor screen.

Height of a monitor screen.

Windows default short date format.
Windows default long date format.

Day of the current date (e.g., 9 if the date is 02/09/2000).

Day of the current date in the DD format (e.g., 09)

Name of the day of the current date (e.g., Sunday, Monday, etc.).
Day of the week (e.g, 1 for Sunday, 2 for Monday, ..., 7 for Satur
Month of the current date (e.g., 02 if the date is 02/19/2000).
Month of the current date in the MM format (e.g., 02).

Year of the current date (e.g., 2000 if the date is 02/19/2000).
Year of the current date in the YY format (e.g., 00).

Name of the month of the current date (e.g., February if the date
Contains current date in DD/MM/YYYY form.

Contains current date in MM/DD/YYYY form.

Contains hour of the current time (e.g., 2 if the current time is 2:1
Contains hour of the current time (e.g., 14 if the current time is 2:
Contains minute of the current time (e.g., 15 if the current time is

Contains second of the current time (e.g., O if the current time is

_VCurrTime_AMPM

_VCurrTime_Total

_VvCurrDateTime_ForCalc

Files & Folders:

_vDirDateTime

_VFileDateTimeTXT

_VFileDateTimeDAT

_VFolder_AppData

_VvFolder_CommonDesktop

_VvFolder_CommonPrograms

_VFolder_CommonStartMenu

_VvFolder_Cookies

_VFolder_Desktop

_VFolder_Favourites

_VFolder_Personal

_VFolder_Programs

Contains PM/AM of the current time (e.g., PM if the current time
Contains the number of milliseconds elapsed from the last reboc
The macro language natively supports time calculations, howeve

be in appropriate format whichis "YYYY.MM.DD HH:MM:SS" (
This system variable contains current time in this format.

Contains a string with current time and "Dir" prefix that can be us
naming.
Example: "Dir_2007_11 24 ~14~45~03"

Contains a string with current time and "File" prefix and ".txt" ext
used for files naming.
Example: "File_2007_11 24 ~14~45~03.txt"

Contains a string with current time and "File" prefix and ".dat" ex
used for files naming.
Example: "File_2007_11 24 ~14~45~03.dat"

Contains path to the application data folder.

Contains path to the all users desktop folder.

Contains path to the all users start menu programs folder.

Contains path to the all users start menu folder.

Contains path to the cookies folder.

Contains path to the desktop folder.

Contains path to the favorites folder.

Contains path to the personal folder.

Contains path to the start menu programs folder.

_VFolder_Recent

_VFolder_SendTo

_VFolder_StartMenu

_VvFolder_Startup

_VFolder_Templates

_VvFolder_Windows

_VFolder_System

_VFolder_Temp

_VvFolder_AdminTools

_VFolder_BitBucket

_VFolder_CDBurnArea

_VvFolder_CommonAdminTools

_VvFolder_CommonAltStartup

_VvFolder_CommonDocuments

_VvFolder_CommonMusic

_VvFolder_CommonPictures

_VvFolder_CommonTemplates

_VvFolder_CommonVideo

_VFolder_Fonts

_VFolder_InternetCache

_VFolder_MyDocuments

Contains path to the recent files folder.

Contains path to the "send to" folder.

Contains path to the start menu folder.

Contains path to the start menu start up folder.

Contains path to the templates folder.

Contains path to the windows folder.

Contains path to the system folder.

Contains path to the temporary folder.

Contains path to the admin tools folder.

Contains path to the recycle bin folder.

Contains path to the folder where files to be burned are stored.

Contains path to the folder with admin tools for all users.

Contains path to the folder corresponding with nonlocalized Star
all users.

Contains path to the documents folder for all users.

Contains path to the music folder for all users.

Contains path to the pictures folder fro all users.

Contains path to the templates folder for all users.

Contains path to the videos folder for all users.

Contains path to the fonts folder.

Contains path to the IE cache folder.

Contains path to the documents folder for logged user.

_VvFolder_MyMusic

_VFolder_MyPictures

_VvFolder_MyVideo

_VFolder_Resources

_VReportDateTimeTXT

Drag & Drop:

_vDropFile_FileFullPath

_vDropFile_FileName

_vDropFile_FileDir

_vDropFile_Num

Special Characters

_vCmdDelayKeyMs

_VKeyReturn

_vKeyNewLine

_VKeyCR

_vKeyTab

_VvQuoteChar

Contains path to the music folder for logged user.

Contains path to the pictures folder for logged user.

Contains path to the videos folder for logged user.

Contains path to the resource data folder.

Contains a string with current time and "Report" prefix and ".txt" «
used for files naming.
Example: "Report_2007_11 24 ~14~45~03.dat"

The variables described here are only accessible after user dre
toolbar button. (Macro toolbars are only available in MacroToo
Toolworks products.) The variables allowto further process (de
etc.) the file(s) dropped.

Full path to the file dropped.

File name of the file dropped.

Directory of the file dropped.

The number of files dropped

Delay in milliseconds after each keystroke in macro. The default
Setting this variable allows to slow down execution of keystrokes

'Return’ (new line) key (use this key to add a new line to a textin:
equivalent to \r\n codes.

Contains equivalent to \n code (new line).

Contains equivalent to \r code (carriage return).

‘Tab' key (use this key to add 'tab’ to a text in variable).

“ character (use this key to add “ to a text).

_VvKeySpace

_VKeyPercent

_VKeyBigger

_vKeySmaller

_VKeyBracketL

_VvKeyBracketR

_vKeySqgBracketL
_VvKeySqgBracketR
_vKeyComma

Mouse & Keyboard Related
_vCmdDelayMouseMs

_vLastMouseClick

_VvLastKey

_vMousePosX

_VMousePosY
_VvCursorPosX
_VvCursorPosY

_VvisCapsLockON
_VISNumLockON
_visScrollLockON

“space” character

% character

> character

< character

(character

) character

[character
] character
, Character

Delay in milliseconds after each mouse event (such as mouse bl
move, mouse double-click, etc.) in macro. The default value is 5.
allows to slow down (speed up) execution of mouse events.

Contains last mouse click event in the <waitfor> command:
<mlbu> - left button click

<mmbu> - middle button click

<mrbu> - right button click

Contains last key pressed in the <waitfor> command.

Mouse cursor position in the screen coordinates - X.

Mouse cursor position in the screen coordinates - Y.

X-position (in absolute coordinates) of blinking cursor that is she
text. If the cursor is not present or its position cannot be retrievec
Y-position (in absolute coordinates) of blinking cursor that is sho
text. If the cursor is not present or its position cannot be retrievec
Is setto YES if CapsLock is on. Otherwise the variable contains

Is setto YES if NumLock is on. Otherwise the variable contains
Is setto YES if ScrollLock is on. Otherwise the variable contains

_VvMouseCursorShape

Clipboard Related

_VClpFormats

_VClpSize

_VClpText

_VClpSequenceNumber

_VClpTextHistoryEnable

_VClpText0, VvClpTextl,..., vClpText9

Macro Flow Related

_vCanceled

_vLoopCounter

_vLoopCounter0

_visConnectedTolnternet

_VEIr

Current shape of the mouse cursor. Can be one of these:
ARROW
BEAM

WAIT

CROSS
UPARROW
SIZENWSE
SIZENESW
SIZEWE
SIZENS
SIZEALL

NO

HAND
APPSTARTING
HELP

Contains comma separated list of formats of data currently save

Contains size of clipboard data.

Contains text clipboard data (if currently available).

Contains clipboard sequence number that is increased any time
is changed.

If this variable is set to "YES" (must be set by a macro) then the |
_VClpTextl, etc. contains historical clipboard data.

Contains historical clipboard textual data. _vClpTextO contains tl
_VClpText9 contains the oldest data. The content of the _vClpTe
variables change always when new text data is copied to clipbo:
data is only collected if _vClpTextHistoryEnable is setto "YES".

The variable is setto 1 if a command (<form_show>, <extmacro
<var_oper>) si canceled by user. Otherwise the variable contai

Loop counter (see <begloop> and <endloop> commands). Start

Loop counter (see <begloop> and <endloop> commands). Start

If the computer is connected to the Internet the variable value is €
otherwise itis NO.

If an error occurs during macro execution, the error description i¢
variable.

_VisExecOnlyCommands

_VWinStarting

_VvMacroParameter

_vMacroResult

_VMacroFileLoaded

_VvMacroSharedFileLoaded

_VvMacroFileFolder

_VRunningMacroName

_VRunningMacrold

_VvMsgButton

After <cmds> command is executed, this variable content is YE¢
<keys> command is executed it is NO.

If the program is set to automatically start on windows startup the
contains "YES" when the program is starting on windows startup
is "NO".

This variable contains parameter that is passed to macro startec
commands:

<run>
<extmacro>
<remote_macro_call>

[Note: Unlike other system variables, the value of this variable ¢
<varset> command.]

This variable contains result returned from macro started using f

<run>
<extmacro>
<remote_macro_call>

[Note: Unlike other system variables, the value of this variable ¢
<varset> command.]

Full path to the macro file currently loaded in the program.

It is also possible to write to this variable in order to force the prc
macro file:
<varset>("_vMacroFileLoaded=c:\....\otherfile.4tw","")

Note: The other file is loaded when there is no macro currently
Full path to the shared macro file currently loaded in the programr
Folder where the currently loaded macro file resides. Itis ended
Contains name of the currently running macro.

Contains Id of the currently running macro.

The variable contains YES if "Yes" button was clicked in the <ms
otherwise it contains NO.

_visMacroEnabled. MACRONAME

_VvisGroupEnabled MACRONAME

_vDoesVariableExist VARIABLE

_VWvaitForimage PosX

_VWaitForimage PosY

Power Status (laptop)
_VvPowerAcStatus

_VvPowerBatteryLifePercent

_VvPowerBatteryLifeSeconds

Other:

_vLastWebPagelLoaded
_vLastAppExitCode

_VvLastExecutedFileProcessid

_VOS_UserDefaultLanguagelD

_VvOS_SystemDefaultLanguagelD

_VStrEmpty

Such system variable exist for each macro. The variable contai
enabled, otherwise itis "0". For example, if the macro name is "
associated system variable is "_visMacro_Enabled_MyMacrol"

Such system variable exist for each macro group. The variable
macro group is enabled, otherwise itis "0". For example, if the 1
is "FileMacros" then the associated system variable is

" visGroupEnabled MyMacrol".

Such system variable exist for each variable. The variable cont:
exists, otherwise itis "0". For example, if the name of a variable
the associated system variable is *_vDoesVariableExist vMyD:«

This variable contains X position of the image that was found on
<waitfor>(...IMAGE_ON_SCREEN...) command.

This variable contains Y position of the image that was found on
<waitfor>(...IMAGE_ON_SCREEN...) command.

This variable is:
"1" if there is a power connected to the laptop
"0" if the power is is not connected to the laptop
"unknown" if the status is unknown (not laptop)
This variable contains either the percentage of battery charge re
range 0 to 100) or "unknown" if status is unknown (not laptop).

This variable contains either the number of seconds of the batter
or "unknown" if status is unknown (not laptop).

This variable contains URL of the web page last opened using <
<www_fillform>..

Exit code of last application that was executed by <execappex>
parameter "wait for exited".

Process Id of the last file opened using <execappex> command.

Contains the language identifier of the current Windows user loc

Contains the language identifier of the Windows system locale.

Empty string (use this variable to assign empty string to a variab

_visScreensaverRunning

_VisScreensaverEnabled

_VvOperatingSystemVersion

_vScreenWidth

_VvScreenHeight

_VvThisProgramVersion

YES if screen saver is running.

YES if screen saver is enabled.

Operating system version.

Screen width in pixels.

Screen height in pixels.

Contains #THIS _ PROGRAM¢# internal version.

Commands & Syntax >

Expressions & Time Calculations

Expressions can be used as command parameters including "if' command condition. Expressions have
this syntax:

EXPR(expression)
or
EXPRXX(expression)

Note: XX specifies how many digits follow after decimal point (real numbers precision) if the expression
calculates in real numbers.

Expressions can be used as a parameter for almost all commands. Expressions support all basic
mathematical operations and brackets.

Examplel: <mm>(EXPR(%_vScreenWidth%/2), EXPR(%_vScreenHeight%/2))
Example2: <varset>("vPercent=EXPR(100*(%vItems%/%vitemsT otal%))","")

The expressions support also date/time arithmetic's. The date/time must be in ISO format which is
"yyyy-mm-ddThh:mi:ss", for example 2018-04-16T21:05:58. The difference between two times is
"time span"” that has this format "days hh:mi:ss", for example 4 02:0:01 (four days and two hours and
one second difference). The time span is also used to add/subtract amount of time to/from given time.
This operations are supported:

"days hh:mi:ss" = "yyyy-mm-ddThh:mi:ss" - "yyyy-mm-ddThh:mi:ss"
"yyyy-mm-dd Thh:mi:ss" = "yyyy-mm-ddThh:mi:ss" + "days hh:mi:ss"
"yyyy-mm-dd Thh:mi:ss" = "yyyy-mm-ddThh:mi:ss" - "days hh:mi:ss"
"days hh:mi:ss" = "days hh:mi:ss"+"days hh:mi:ss"

"days hh:mi:ss" = "days hh:mi:ss"-"days hh:mi:ss"

Example3: <varset>("vTomorrowDate=EXPR(%_vCurrDateTime_ISO%+1 0:0:0)","") <#> 1 day later
(next day)

Example4: <varset>("vDate=EXPR(%_vCurrDateTime_ISO%-10 13:45:10)","") <#> What date was
before 10 days, 13 hours, 45 minutes and 10 seconds

Example5: <varset>("vTimeSpan=EXPR(%_vCurrDateTime_IS0%-2005.11.21 13:45:00)","") <#>
Howmuch time left since 2005/11/21, 13:45:00

There are these limitations on time input: 1970 <=yyyy<=3000; 1 <=mm<=12;1<=dd <=31;0<=
hh <=23; 0 <=mi <=59; 0 <=ss <=59

http://www.perfectkeyboard.com

Commands & Syntax >

Commands

Available commands are logically organized in groups. Each command comes with a simple example
showing how to use the command in a macro.

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Free Text

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Free Text >

- ... [Free]

A free macro text

Available in: Free edition

When macro is started, the macro free text is sent to currently active application (window). The macro free text is sent to
the active application either as a sequence of keystrokes or pasted through clipboard - what option is used depends on the
program settings and the macro settings.

The macro free text is typically used in combination with "text shortcut" keyboard trigger to implement simple "text
replacement” macros.

The macro free text can be combined with any macro command - just add macro command anywhere in the macro text.

Example (Macro Steps):

If this macro isrun in Notepad (for example) then whole this text is inserted to Notepad.

Example (Plain Text):

If this macro is run in Notepad (for example) then whole this text is inserted to Notepad.

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Clipboard

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Clipboard >

SAVE - < clpsave >() ... [Pro]

<clpsave>("File path")

Available in: Professional edition

Sawes clipboard content to file. Depending on the file extension the clipboard content is saved different ways:
.clx - whole the clipboard content (all clipboard formats) is saved

.txt - just plain text - if available in clipboard - is saved to file
.bmp, .jpg, .png, .gif - just picture - if available in clipboard - is sawved to file

Parameter name Parameter description

1 File path Full path to the file that receives clipboard data.

Example (Macro Steps):

2 Macro execution: ONLY COMMANDS
File path=c:\clpdata.clx

Example (Plain Text):

<#> This example saves clipboard data to file c:\clpdata.clx
<#>

<cmds>

<clpsawve>("c:\clpdata.cIx")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Clipboard >

LOAD - < clpload >() ... [Pro]

<clpload>("File path™)
Available in: Professional edition

Loads clipboard content from file. It can be a file previously created using "clipboard savwe" command or by "Tools\Save
Clipboard Data To File" menu command. It can be also a .txt file or a .bmp, .png, .jpg, .gif image file. This command
changes clipboard content.

Parameter name Parameter description

1 File path Full path to file.

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 IF FILE "c:\clpdata.cIx" Exist ()
4 ; —
File path=c:\clpdata.clx
5 .
ELSE activate
6 Message SHOW " : "The file 'c:\clpdata.clx' doesn't exist." (other parameters: x = 100, y = 100, Window
title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).
7

ENDIF

Example (Plain Text):

<#> This example loads clipboard data from file "c:\clpdata.clx"
<#>
<cmds>

<if_file>("c:\clpdata.clx”,"EXIST","")

<clpload>("c:\clpdata.clx")
<else>

<msg>(100,100,"The file ‘c:\clpdata.clx' doesn't exist.","Message",1)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Clipboard >

PASTE - < clppastetext >() ... [Free]

<clppastetext>("Text to paste”)
Available in: Free edition

The command inserts text to active application (window) through clipboard simulating the paste function. The command
puts text passed as the command parameter to the clipboard and then invokes "Ctrl+V" in the active application.

Parameter name Parameter description

1 Text to paste Text (variable) to be pasted to destination application (document).

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOW "[* - Notepad|Notepad|#46[#118]" Is Open (Match=Patrtial)

4 bring "[* - Notepad|Notepad|#46[#118]" window to top (other parameters: Match =
Partial, Window state = Normal, %p4_name =)

5 Text to paste=Hello!

6 .

ELSE activate

7 Message SHOW " : "'Notepad' is not opened!" (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

8

ENDIF

Example (Plain Text):

<#> This macro pastes "Hello!" into the Notepad
<cmds>

<if_win>("[* - Notepad|Notepad|#46|#118]","OPEN",0)
<actwin>("[* - Notepad|Notepad|#46|#118]",0,0)
<clppastetext>("Hello!)

<else>
<msg>(100,100,"Notepad' is not opened!","Message",1)

<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Clipboard >

CLEAR - < clpempty > ... [Pro]

<clpempty>
Available in: Professional edition

This command clears the clipboard content.

Example (Macro Steps):

Example (Plain Text):

<#> This macro clears clipboard content
<#>
<clpempty>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Clipboard >

COPY - < clpput >() ... [Pro]

<clpput>("Text or file shortcut to copy:")
Available in: Professional edition

Puts text data or file shortcut to clipboard. This command changes clipboard content.

Parameter name Parameter description

1 Text or file shortcut to copy: Text to be put into the clipboard. It is also possible to put a file shortcut to the
clipboard this way: FILE:file path. Example: ("FILE:c:\templ\file.txt") command
puts shortcut to "c:\temp\file.txt" file to clipboard so that the file then can be
copied using Windows Explorer "Paste” menu command.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "vData=", Message text="Type text you want to put to clipboard"
4

“Data"

Example (Plain Text):

<#> This macro puts data you type to clipboard

<#>

<cmds>

<varset>("vData=","Type text you want to put to clipboard")
<clpput>("vData")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Clipboard >

COPY SELECTED - < clp_copyselected >() ... [Pro]

<clp_copyselected>(Copy hotkey used, Timeout (seconds))
Available in: Professional edition

Copies selected data (text in a word processor, graphics in a graphics program, file in Windows Explorer, etc.) to clipboard.
This command mimics pressing Ctrl+C (or Ctrl+Insert) key combination.

Parameter name Parameter description

1 Copy hotkey used 0 - Ctrl+C key combination is used to copy the data to clipboard.
1 - Ctrl+Insert key combination is used to copy the data to clipboard.

2 Timeout (seconds)

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Error message DISABLED

4 Copy hotkey used=Ctrl+C, Timeout (seconds)=

5 IF STRING _VErr I= NO

6 Message SHOW " : "Cannot save data to clipboard - no text (or other object) is selected.” (other
parameters: x = -100, y = -100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on
top =).

7 ENDIF

Example (Plain Text):

<#> This example copies selected data to clipboard
<#>
<cmds>
<me_error_nodisplay>
<clp_copyselected>(0)
<if_str>("_vErr = NO")
<msg>(-100,-100,"Cannot save data to clipboard - no text (or other object) is selected.","Message",1)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Clipboard >

Replace text - < clp_replace_text >() ... [Pro]

<clp_replace_text>("Old text","New text",What,Method)

Available in: Professional edition

This command modifies current clipboard content (all textual formats) by replacing or inserting a portion of the text in the
clipboard. It is possible to replace string or matching wildcard or matching regular expression by other string.

Parameter name

Parameter description

1 Old text Current text in the clipboard to match.

2 New text New text to be inserted to the clipboard.

3 What Tells whether plain text, wildcard or regular expression should be used to match
the current text in the clipboard. The values are "text", "wildcard" or "regex".

4 Method Tells how to insert new text. Options are:

replace - The matching text in the clipboard is replaced by new text
insert_before - New text is inserted right in front of the matching text
insert_after - New text is inserted next to the matching text

Example (Macro Steps):

"Put date here: xxx"

Format=Windows user default - long, Separator=/, Day

leading zero=Yes, Month leading zero = Yes, Day shift = 0, Variable for result = vDate

Example (Plain Text):

Old text = "xxx", New text = "%vDate%", What = "Text", Method = "Replace text"

<#>This macro shows how to replace xxx text in clipboard by current date

<clpput>("Put date here: xxx")<#>
<date>(21,"/",1,1,0,"vDate")<#>

<clp_replace_text>("xxx","%vDate%" text,replace)

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Comments

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Comments >

Comment Line - < # > ... [Free]

<#>
Available in: Free edition

This command has a single line comment meaning. The text on this line is ignored when macro is executed.

Example (Macro Steps):

Example (Plain Text):

<#> This macro will do nothing...
<#>... because it contains...
<#>... only comments.

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Comments >

Comment Block BEGIN { - < {# > ... [Pro]

<{#>
Available in: Professional edition

This command begins a comment block. All macro text (macro steps) that are enclosed between <{#> and <}#> are
ignored during macro execution.

Example (Macro Steps):

Example (Plain Text):

<#>This macro does nothing because ewerything is commented out
<{#><ScrollLock_ON>Everything is ignored....<}#>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Comments >

Comment Block END } - < }# > ... [Pro]

<>

Available in: Professional edition

This command ends a comment block. All macro text (macro steps) that are enclosed between <{#> and <}#> are ignored
during macro execution.

Example (Macro Steps):

Example (Plain Text):

<#>This macro does nothing because ewerything is commented out
<{#><ScrollLock_ON>Everything is ignored....<}#>

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Date & Time

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Date & Time >

: DATE Insert or save to Variable - < date >() ... [Free]

<date>(Format,"Separator”,Day leading zero,Month leading zero,Day shift,"Variable for result","Date")
Available in: Free edition

The command inserts date information (e.g., 02/24/2000) in required format to the currently active window or sawes it to
required variable. The command uses current date and time unless other date/time is supplied as the last parameter.

http://www.perfectkeyboard.com

Parameter name

Parameter description

1 Format

The date format. There are several formats predefined and can be referenced by
number:

0 = DDMMYYYY

1= MMDDYYYY

2=DD

3=MM

4 = DDMM

5= MMDD

6 = MMYYYY

7 = DD_January_YYYY

8 = January_DD_YYYY

9 = Friday_X January DD_X YYYY
10 = Friday_January_DD_X YYYY
11 = Friday_DD_January

12 = Friday_DD_January_YYYY

13 = Friday

14 = January

15=YYYY

16 =YY

17 = YYYYMMDD

18 = YYYYDDMM

19=YYYYMM

20 = Windows user default - short
21 = Windows user default - long
22 = Format for calculations and compare

It is possible to define the format using a free form text with placeholders (for
example, DD/MM/YY). Th eplaceholders are:

DD - the day (such as 23)

DN - the day name (such as Monday)

DW - the day of the week (such as 1)

MM - the month (such as 2)

MN - the month name (such as February)

YYYY - the year (such as 2019)

YY - two digits year (such as 19 for 2019)

Note: The format cannot contain comma character and brackets. Use a system
variable such as %_vKeyBracketL%.

2 Separator

Separator character: .,/- etc.

3 Day leading zero

If 1, the day is displayed with leading zero (e.g., 02). If O, the day is displayed
without leading zero (e.g., 2).

4 Month leading zero

If 1, the month is displayed with leading zero (e.g., 09). If O, the month is
displayed without leading zero (e.g., 9).

5 Day shift

The date shift in days relative to the current date. O for no shift (today's date), -1
for date one day back (yesterday), +1 for date one day later (tomorrow), etc.

6 Variable for result

Variable that receives the date. If this variable name is an empty string, the date
is send to active application as a set of keystrokes.

7 Date

Date input - the date to be used instead of the current date. It must be in ISO
format (yyyy-mm-ddThh:mm:ss).

Example (Macro Steps):

2 Current date is:

3 Date & Time : DATE Insert or save to Variable Format=MMDDYYYY, Separator=/, Day leading zero=Yes,
Month leading zero = Yes, Day shift = 0, Variable for result =

4 .
\ Current date is:

5 Date & Time : DATE Insert or save to Variable Format=Friday January DD XYYYY, Separator=/, Day
leading zero=Yes, Month leading zero = Yes, Day shift = 0, Variable for result =

6 .
\ Yesterday:

7 Date & Time : DATE Insert or save to Variable Format=MMDDYYYY, Separator=/, Day leading zero=Yes,
Month leading zero = Yes, Day shift = -1, Variable for result =

8 \ 2020-11-23 in different format:

9

Date & Time : DATE Insert or save to Variable Format=Windows user default - long, Separator=/, Day
leading zero=Yes, Month leading zero = Yes, Day shift = 0, Variable for result =

Example (Plain Text):

<#> Run this example in Notepad:

Current date is: <date>(1,"/",1,1,0,"")

Current date is: <date>(10,"/",1,1,0,"")

Yesterday: <date>(1,"/",1,1,-1,"")

2020-11-23 in different format: <date>(21,"/",1,1,0,"","2020-11-23")

Commands & Syntax > Commands > Date & Time >

: TIME Insert or save to Variable - < time >() ... [Free]

<time>(Minute shift,Hour leading zero,Minute leading zero,Format, Time base,"Variable for result")

Available in: Free edition

The command inserts time (e.g., 2:09 AM) into the currently active window or saves it to required variable.

Parameter name Parameter description

1 Minute shift The time shift in minutes relative to the current time. 0 for no shift, -1 for time one
minute back, +1 for time one minute later, etc. Can be a number or variable
containing numeric value.

2 Hour leading zero If 1, the hour is displayed with leading zero (e.g., 02). If O, the hour is displayed
without leading zero (e.g., 2). Can be a number or variable containing numeric
value.

3 Minute leading zero If 1, the minute is displayed with leading zero (e.g., 09). If 0, the minute is
displayed without leading zero (e.g., 9). Can be a number or variable containing
numeric value.

4 Format Format used to produce time information. This is a free form text that can contain
the following placeholders:

HH - is replaced by hours

MM - is replaced by minutes

SS - is replaced by seconds

a.m.p.m. - is replaced by a.m. or p.m.

ampm - is replaced by am or pm

A.M.P.M. -is replaced by A.M. or P.M.

AMPM - is replaced by AM or PM

Default format is HH:MM:SS.

Note: The format cannot contain comma character and brackets. Use a system
variable such as %_vKeyBracketL%.

5 Time base If 0, the 24 hours time base is used. If 1, the 12 hours time base is used.

6 Variable for result Variable that receives the time. If this variable name is an empty string, the time
is send to active application as a set of keystrokes.

Example (Macro Steps):

Current time (24-hours base, no AM/PM) is:

Minute shift=0, Hour leading zero=Yes, Minute leading

zero=Yes, Format = 0, Time base = 24 Hours, Variable for result =

\ Current time (12-hours base, with AM/PM) is:

Minute shift=0, Hour leading zero=Yes, Minute leading

zero=Yes, Format = 1, Time base = 12 Hours, Variable for result =

Example (Plain Text):

http://www.perfectkeyboard.com

<#> Run this macro in Notepad:
Current time (24-hours base, no AM/PM) is: <time>(0,1,1,0,0,"")
Current time (12-hours base, with AM/PM) is: <time>(0,1,1,1,1,"")

Commands & Syntax > Commands >

Display / Computer Screen

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Display / Computer Screen >

GET PIXEL - < display_getpixel >() ... [Pro]

Display GET PIXEL
<display_getpixel>(x,y,Variable)
Available in: Professional edition

Retrieves color on the given position on screen.

Parameter name Parameter description
1 X X-coordinate (in screen coordinates) of the point.
2 y Y-coordinate (in screen coordinates) of the point.
3 Variable Variable that receives the color (as a number).

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 Message SHOW " : "Move mouse cursor to white color area and press 'Enter' key." (other parameters: x =
-100, y = -100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).
4 Display GET PIXEL color from position [x=_vMousePosX, y=_vMousePosY] to variable "vColor"
5 IF NUMERIC VColor==16777215
6 Message SHOW " : "Yes, mouse cursor is on white color area." (other parameters: x = -100, y = -100,
Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).
7 .
ELSE activate
8 Message SHOW " : "No, mouse cursor is not on white color area.” (other parameters: x = -100, y = -100,
Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).
9

ENDIF

Example (Plain Text):

<#> This macro will show how to use 'get pixel' command:
<#>
<cmds>

<msg>(-100,-100,"Move mouse cursor to white color area and press 'Enter' key.","Message”,1)
<display_getpixel>(_vMousePosX,_vMousePosY ,vColor)

<if_num>("vColor==16777215")

<msg>(-100,-100,"Yes, mouse cursor is on white color area.","Message",1)
<else>

<msg>(-100,-100,"No, mouse cursor is not on white color area.","Message",1)
<endif>

http://www.perfectkeyboard.com

127

Commands & Syntax > Commands > Display / Computer Screen >

CHANGE WALLPAPER - < display_changewallpaper >() ... [Pro]

Display CHANGE WALLPAPER
<display_changewallpaper>(File)
Available in: Professional edition

This command changes wallpaper on Windows desktop.

Parameter name Parameter description

1 File Full path to file with wallpaper image.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable OPERATION "SELECT_FILE" (Variable for result = WVallpaperFile, Input text/variable =
c:\winnt*.bmp, Parameter 1 = , Parameter 2 = , Parameter 3 = 0)

4 IF STRING WVallpaperFile = _vEmptyStr

5 Display CHANGE WALLPAPER "WVallpaperFile"

6 Message SHOW " : "Wallpaper changed!" (other parameters: x = -100, y = -100, Window title = Message,

Buttons = OK, Timeout (seconds) =, Always on top =).
7

ENDIF

Example (Plain Text):

<#> This macro changes wallpaper image
<#>
<cmds>

<var_oper>(WVallpaperFile,"c:\winnt*.bmp",SELECT_FILE,"","", "0")

<if_str>("WVallpaperFile |= _vEmptyStr")
<display_changewallpaper>(\W\VallpaperFile)
<msg>(-100,-100,"Wallpaper changed!","Message",1)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Display / Computer Screen >

Image FIND on SCREEN - < display_findimage >() ... [Pro]

Display Image FIND on SCREEN

<display_findimage>("Image file",Start search X Start search Y,Variable for image found X Variable for image found Y,Image
match,Search area width,Search area height)

Available in: Professional edition

This command searches for defined image(s) on computer screen. If the image is found on the screen the command sets
supplied coordinate variables. If multiple image files are defined using wildcards then [x,y] position variables for each image
are created for each image file. For example, if image files are defined using "c:\find_images*.bmp" and there are
"Button.bmp" and "Title.bmp" image files in the "c:\find_images" folder then variables "button.bmp_x" and "button.bmp_y"
variables that defines position of the "Button.bmp" image on the screen is created. The same for "title.bmp" file there are
"title.bmp_x" and "title.bmp_y" variable created. Using such variables it is possible to determine what images were found
and what are their position on the screen. Image file names are always conwerted to lowercase.

Important:

The bitmap file the command is finding must be captured with the same DPI (or zoom in web browser) as the
content presented on the screen. These are typical problems why the command fails:

1. The bitmap file is captured on a monitor with higher/lower DPI than the monitor where the command is
finding the image. To prevent this problem always capture the image on the same monitor where the command
is executed.

2. The bitmap file is captured in web browser with different zoom setting than the current zoom. To prevent this
use the same web browser and the same zoom setings when capturing image and running the macro.

Parameter name Parameter description

1 Image file Full path to the image file. This is a bitmap image that is captured using
"Capture..." feature in the command editor. In addition, multiple image files are
supported by wildcards (* and ?).

2 Start search X X-coordinate where to start searching on the computer screen.

3 Start search Y Y-coordinate where to start searching on the computer screen.

4 Variable for image found X Name of the variable that receives X-coordinate of the position of the image on
the screen. If the image is not found then the variable receives "-1".

5 Variable for image found Y Name of the variable that receives Y-coordinate of the position of the image on
the screen. If the image is not found then the variable receives "-1".

6 Image match If 0 then the image does not has to exactly match, a certain level of tolerance
is allowed.

If 1 then the image has to exactly match.

7 Search area width It is possible to scope searching to an area smaller than the whole screen.
This attribute specifies the width of the searching area. If this parameter is set
to "0" then the whole screen width is being searched.

8 Search area height It is possible to scope searching to an area smaller than the whole screen.
This attribute specifies the height of the searching area. If this parameter is set
to "0" then the whole screen height is being searched.

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS
3 Display Image FIND on SCREEN "C:\PicturesForMacros\StartButton.bmp" (Start search X= 0, Start search
Y = 0, Variable for image found X = vStartButtonX, Variable for image found Y = vStartButtonY, Image match =
0, Search area width = , Search area height =)
4 IF %\StartButtonX% > -1
5
6 Mouse MOVE position [x=%VStartButtonx%, y=%\VStartButtonY %]
7
8 Mouse BUTTON: LEFT button DOWN
9 Mouse BUTTON: LEFT button UP
10 ELSE activate
11
12 Message SHOW "Error" : "The Start button was not find on the screen. Possible reasons are: 1) The Task
bar is hidden. 2) The Start button is overlapped by some window. 3) The StartButton.bmp file contains
picture other than how Start button looks like." (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) = 0, Always on top =).
13

ENDIF

Example (Plain Text):

<#> This example shows how to find "Start" button on the screen and click on it
<cmds>

<display_findimage>("C:\PicturesForMacros\StartButton.bmp",0,0,vStartButtonX,vStartButtonY, 0)
<if>("%\StartButtonX% > -1")

<#> Start button found, mowve cursor on it...
<mm>(%VvStartButtonX%,%vStartButtonY %)

<#> ...and click
<mlbd><mlbu>

<else>

<#> Start button not found, show message.
<msg>(-100,-100,"The Start button was not find on the screen. Possible reasons are:

1) The Task bar is hidden.
2) The Start button is overlapped by some window.

3) The StartButton.bmp file contains picture other than how Start button looks like.","Message",1,0,2)

<endif>

131

Commands & Syntax > Commands > Display / Computer Screen >

Image CAPTURE from SCREEN - < display_captureimage >() ... [Pro]

Display Image CAPTURE from SCREEN
<display_captureimage>(x,y,Width,Height,"Image file")
Available in: Professional edition

This command captures an image on computer screen.

Parameter name Parameter description
1 X X coordination of the upper left corner of the area to be captured.
2 y Y coordination of the upper left corner of the area to be captured.
3 Width Width of the area to be captured. Ifit is set to "0" then whole screen is captured.
4 Height Height of the area to be captured.
5 Image file Name (or full path) of the resulting image file.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Display Image CAPTURE from SCREEN x = "0", y = "0", Width = "0", Height = "0", Image file =
"% _VFolder_Personal%\Screenlmage.bmp"

4 Message SHOW "Question" : "Do you want to see the captured image now?" (other parameters: x = -100, y =
-100, Window title = Message, Buttons = Yes and No, Timeout (seconds) = 0, Always on top =).

5 IF _vMsgButton==YES

6 File OPEN open file "%_vFolder_Personal%\Screenimage.bmp" in system default viewer.

7

ENDIF

Example (Plain Text):

<#> This macro shows how to capture display picture
<cmds>

<display_captureimage>(0,0,0,0,"%_\Folder_Personal%\Screenimage.bmp")
<msg>(-100,-100,"Do you want to see the captured image now?","Message"”,2,0,1)
<if>("_wMsgButton==YES")

<fileopen>("%_wFolder_Personal%\Screenimage.bmp",0)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Display / Computer Screen >

NOTIFICATION - < notify >() ... [Pro]

Display NOTIFICATION
<notify>("Message text")
Available in: Professional edition

This command displayes a Windows notification message.

Parameter name Parameter description

1 Message text The message to display

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Format=Windows user default - long, Separator=/, Day
leading zero=Yes, Month leading zero = Yes, Day shift = 0, Variable for result = vDate

4

Display NOTIFICATION "Current date: %vDate%"

Example (Plain Text):

<#>This macro shows how to use "notify" command
<cmds>

<date>(21,"/",1,1,0,"vDate")

<notify>("Current date: %vDate%")

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Excel

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Excel >

Read cell value - < excel_cell_get >() ... [Pro]

Excel: Read cell value
<excel_cell_get>(Workbook identifier,Column,Row,Variable for result)
Available in: Professional edition

This command reads a cell value of the currently active worksheet and stores it to variable.

Parameter name Parameter description
1 Workbook identifier A workbook identifier previously obtained by "open workbook" command.
2 Column Cell column identifier. For example: F
3 Row Cell row identifier. For example: 21
4 Variable for result Variable that receives value from the cell defined by column and row. (Value from
F21 cell in our example.)

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4 Excel: Open/Create workbook "™ (Worksheet =", Show = "Yes", Workbook identifier = "wbi")

5 Excel: Write value to cell [B 2] <— B2 value (Workbook identifier = %whbi%)

6 Excel: Read cell value [B 2] ---> vCellB2 (Workbook identifier = %wbi%)

7

8 Message SHOW "Information” : "%\vCellB2%" (other parameters: x = -100, y = -100, Window title = , Buttons =
OK, Timeout (seconds) = 0, Always on top = No).

9

Excel: Close workbook "%wbi%" (SAVE = "No")

Example (Plain Text):

<#> This macro shows how to write data to Excel cell
<#> and how to read it again

<cmds>

<excel_wb_open>("","",1,whbi)
<excel_cell_set>(%whbi%,B,2,"B2 value")
<excel_cell_get>(%whbi%,B,2,vCellB2)

<#> Let's see what we hawe written..
<msg>(-100,-100,"%\CellIB2%","",1,0,0,0)
<excel_wb_close>(%wbi%,0)

http://www.perfectkeyboard.com

136

Commands & Syntax > Commands > Excel >

Write value to cell - < excel_cell_set >() ... [Pro]

Excel: Write value to cell
<excel_cell_set>(Workbook identifier,Column,Row,"Value")
Available in: Professional edition

This command writes a value to defined cell of currently active worksheet.

Parameter name Parameter description
1 Workbook identifier A workbook identifier previously obtained by "open workbook" command.
2 Column Cell column identifier. For example: F
3 Row Cell row identifier. For example: 21
4 Value A value to write to the cell.

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4 Excel: Open/Create workbook "™ (Worksheet =", Show = "Yes", Workbook identifier = "wbi")

5 Excel: Write value to cell [B 2] <--- B2 value (Workbook identifier = %whbi%)

6 Excel: Read cell value [B 2] ---> vCellB2 (Workbook identifier = %wbi%)

7

8 Message SHOW "Information” : "%\vCellB2%" (other parameters: x = -100, y = -100, Window title = , Buttons =
OK, Timeout (seconds) = 0, Always on top = No).

9

Excel: Close workbook "%wbi%" (SAVE = "No")

Example (Plain Text):

<#> This macro shows how to write data to Excel cell
<#> and how to read it again

<cmds>

<excel_wb_open>("","",1,whbi)
<excel_cell_set>(%whbi%,B,2,"B2 value")
<excel_cell_get>(%whbi%,B,2,vCellB2)

<#> Let's see what we hawe written..
<msg>(-100,-100,"%\CellIB2%","",1,0,0,0)
<excel_wb_close>(%wbi%,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Excel >

Open/Create workbook - < excel_wb_open >() ... [Pro]

Excel: Open/Create workbook
<excel_wb_open>("Workbook","Worksheet",Show,Workbook identifier)
Available in: Professional edition

This command opens a Microsoft ® Excel ® application with defined workbook (file) open (or opens Excel ® with a newly
created empty workbook). "Close workbook" command must be used to properly close Excel workbook.
Note: Microsoft ® and Excel ® are Microsoft Corporation registered trademarks.

Parameter name Parameter description

1 Workbook The workbook (file) to open. If empty then a new workbook is created.

2 Worksheet The worksheet to activate. If empty then last active worsheet is activated.

3 Show Excel window is visible:
0-No
1-Yes

4 Workbook identifier Variable that receives identifier of the workbook. This identntifer can be used for
"close workbook™ and other workbook related commands.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Excel: Open/Create workbook " (Worksheet = "", Show = "Yes", Workbook identifier = "whi")

4 Message SHOW "Information” : "A new Excel workbook is open and will be closed now." (other parameters: x
= -100, y = -100, Window title = Excel Open/Close, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

5

Excel: Close workbook "%wbi%" (SAVE = "No")

Example (Plain Text):

<#>This macro shows how to open and close an Excel workbook

<cmds>

<excel_wb_open>("","",1,whbi)

<msg>(-100,-100,"A new Excel workbook is open and will be closed now.","Excel Open/Close",1,0,0,0)
<excel_wb_close>(%wbi%,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Excel >

Save - < excel_wb_save >() ... [Pro]

Excel: Save
<excel_wb_save>(Workbook identifier,"File path")
Available in: Professional edition

This command saves changes made to defined workbook.

Parameter name Parameter description
1 Workbook identifier A workbook identifier previously obtained by "open workbook" command.
2 File path File to save the workbook to. If this field is empty then the workbook is saved to
the file it was opened from.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Excel: Open/Create workbook " (Worksheet = "", Show = "Yes", Workbook identifier = "whi")
4 Excel: Save Workbook identifier=%wbi%, File path=%_\Folder_Temp%\workbook

5 Excel: Close workbook "%wbi%" (SAVE = "No")

6

Message SHOW "Information” : "Workbook was saved to this file: %_vFolder_Temp%\workbook" (other
parameters: x = -100, y = -100, Window title = Workbook Saved, Buttons = OK, Timeout (seconds) = 0, Always
on top = No).

Example (Plain Text):

<#>This macro shows how to save Excel workbook

<cmds>

<excel_wb_open>("","",1,wbi)
<excel_wb_save>(%wbi%,"%_vFolder_Temp%\workbook")<excel_wb_close>(%wbi%,0)
<msg>(-100,-100,"Workbook was sawed to this file:

%_violder_Temp%/\workbook","Workbook Sawed",1,0,0,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Excel >

Get worksheets - < excel_wb_sheets >() ... [Pro]

Excel: Get worksheets
<excel_wb_sheets>(Workbook identifier,Variable for sheet names,Variable for number of sheets,Variable for active sheet)

Available in: Professional edition

This command retrieves names of worksheets (and currently active worksheet) for given workbook.

Parameter name Parameter description
1 Workbook identifier A workbook identifier previously obtained by "open workbook" command.
2 Variable for sheet names Variable (array) that receives names of all worksheets.
3 Variable for number of sheets Variable that receives number of all worksheets.
4 Variable for active sheet Variable that receives name of currently active worksheet.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Excel: Open/Create workbook " (Worksheet = "", Show = "Yes", Workbook identifier = "whi")

4 Excel: Get worksheets (Workbook identifier = "wbi", Variable for sheet names = "vSheets", Variable for
number of sheets = "vSheetNum", Variable for active sheet = "vActiveSheet")

5 Message SHOW "Information” : "The newly open workbook has: Number of sheets: %vSheetNum% The first
sheet name is: %VvSheets[0]% The active sheet name is: %VActiveSheet%" (other parameters: x = -100, y =
-100, Window title = Excel Open/Close, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

6

Excel: Close workbook "%wbi%" (SAVE = "No")

Example (Plain Text):

<#>This macro shows how to open and close an Excel workbook
<cmds>

<excel_wb_open>("","",1,wbi)
<excel_wb_sheets>(wbi,vSheets,vSheetNum,vActiveSheet)
<msg>(-100,-100,"The newly open workbook has:

Number of sheets: %vSheetNum%

The first sheet name is: %VvSheets[0]%

The active sheet name is: %VActiveSheet%","Excel Open/Close",1,0,0,0)
<excel_wb_close>(%wbi%,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Excel >

Activate worksheet - < excel_wb_activatesheet >() ... [Pro]

Excel: Activate worksheet
<excel_wb_activatesheet>(Workbook identifier,"Worksheet")
Available in: Professional edition

This command activates defined worksheet in an open workbook identified by its identifier.

Parameter name Parameter description
1 Workbook identifier A workbook identifier previously obtained by "open workbook" command.
2 Worksheet A name of worksheet to activate.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Excel: Open/Create workbook " (Worksheet = ", Show = "Yes", Workbook identifier = "whi")
4 Excel: Activate worksheet Workbook identifier=%wbi%, Worksheet=Sheet1

5

6

Excel: Close workbook "%wbi%" (SAVE = "No")

Example (Plain Text):

<#>This macro shows how to activate worksheet in Excel workbook
<cmds>

<excel_wb_open>("","",1,wbi)
<excel_wb_activatesheet>(%wbi%,"Sheet1")

<#>Do something useful here...

<excel_wb_close>(%wbi%,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Excel >

Close workbook - < excel_wb_close >() ... [Pro]

Excel: Close workbook
<excel_wb_close>(Workbook identifier, SAVE)
Available in: Professional edition

This command closes a Microsoft ® Excel ® workbook (file) and optionaly sawes it.
Note: Microsoft ® and Excel ® are Microsoft Corporation registered trademarks.

Parameter name Parameter description
1 Workbook identifier A workbook identifier previously obtained by "open workbook" command.
2 SAVE Save workbook:
0-No
1-Yes

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Excel: Open/Create workbook " (Worksheet = "", Show = "Yes", Workbook identifier = "whi")

4 Message SHOW "Information” : "A new Excel workbook is open and will be closed now." (other parameters: x
= -100, y = -100, Window title = Excel Open/Close, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

5

Excel: Close workbook "%wbi%" (SAVE = "No")

Example (Plain Text):

<#>This macro shows how to open and close an Excel workbook

<cmds>

<excel_wb_open>("","",1,whbi)

<msg>(-100,-100,"A new Excel workbook is open and will be closed now.","Excel Open/Close",1,0,0,0)
<excel_wb_close>(%wbi%,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

External Scripts

http://www.perfectkeyboard.com

Commands & Syntax > Commands > External Scripts >

Embedded JAVA SCRIPT - < script_js > ... [Pro]

Embedded JAVA SCRIPT
<script_js>
Available in: Professional edition

This command runs a "JavaScript" script within the macro.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

Embedded JAVA SCRIPT \\ function Hello() \ {\ var WSHShell = WScript.CreateObject("WScript.Shell"); \
WSHShell.Popup("Hello, this is JavaScript"); \ }\ \ Hello() \ \

Example (Plain Text):

<#> This is very simple JavaScript example
<cmds>

<script_js>
function Hello()

{
var WSHShell = WScript.CreateObject("W Script.Shell");

WSHShell.Popup(“Hello, this is JavaScript");
}

Hello()

</script_js>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > External Scripts >

Embedded VB SCRIPT - < script_vbs > ... [Pro]

Embedded VB SCRIPT
<script_wbs>
Available in: Professional edition

This command runs "VBScript" script within the macro.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

Embedded VB SCRIPT \ MsgBox("This is VB Script") \

Example (Plain Text):

<#> Very simple VB Script example
<cmds>

<script_wbs>

MsgBox("This is VB Script")
</script_wbs>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > External Scripts >

Embedded BASIC SCRIPT - < script_basic > ... [Pro]

Embedded BASIC SCRIPT
<script_basic>
Available in: Professional edition

This command runs a "Basic Script" script within the macro. It is possible to exchange data between the program native
macro language variables and the Basic Script variables. The variable content exchange is done through DDE - see the
samples below.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Embedded BASIC SCRIPT \ Sub Main \' s = Sin(2) \ Clipboard s \ End Sub \

4 Run APPLICATION "notepad.exe" (other parameters: Parameters =, Folder path =, Window state = Normal).
Macro execution waits for application to finish up to "0" seconds.

5 WAIT FOR Object = "WIN", Event = "OPEN", Parameter = "Notepad", Timeout (seconds) = "5", Exact = "0"

6 Macro execution: KEYS / FREE TEXT + COMMANDS

7 Key Ctrl

8 %

° Key Ctrl

Example (Plain Text):

<#> Count sin(1), put it to clipboard and show it in Notepad
<#>

<cmds>

<script_basic>

Sub Main

s = Sin(1)

Clipboard s

End Sub

</script_basic>
<execappex>("notepad.exe","","",0,0)
<waitfor>("WIN","OPEN","Notepad",5,0)
<keys><ctrl>wctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

File Mainpulation

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

OPEN - < fileopen >() ... [Free]

File OPEN
<fileopen>("File",Window state)
Available in: Free edition

Opens file within the associated application.

Parameter name Parameter description
1 File Full path to the file to open (e.g., "c:\mydocuments\letterl.doc"). Can be a static
text or variable containing text.
2 Window state The state of the window:
0 - Normal
1 - Maximized
2 - Minimized

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable OPERATION "SELECT FILE" (Variable for result = VFile, Input text/variable = , Parameter 1 = Select
File, Parameter 2 = , Parameter 3 = 0)

4 IF STRING _\Canceled==

5 Macro EXIT

6 ENDIF

7

File OPEN open file "vFile" in system default viewer.

Example (Plain Text):

<#> This command opens file user selects

<#>

<cmds>

<var_oper>(\File,"",SELECT_FILE,"Select File","", "0")
<if_str>("_vCanceled==1") <exitmacro> <endif>
<fileopen>("vFile",0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

COPY - < filecopy >() ... [Free]

File COPY

<filecopy>("Source","Destination",Subfolders,Unused, Retries,Variable for number of processed files,Variable for number of

failures,"Log errors”,"Additional options")
Available in: Free edition

This command copies one or multiple files.

Parameter name Parameter description

1 Source Full path to the file to copy (e.g., "c:\mydocuments\original.doc") or
just file name (in such case it is expected the file is located in the
same folder as macro file). The file name can contain wildcard
characters (*?). In such the case all the files matching the pattern
are copied.

2 Destination Full path to the new file (e.g., "c:\mydocuments\copy.doc") or just
file name (in such case the copied file will be located in the same
folder as macro file). If the FileSource contains wildcard characters
the FileDestination must specify directory (e.g., "c:\mydocuments")
where multiple files are copied.

This field cannot be left empty.

3 Subfolders Takes effect only if the FileSource contains wildcard characters. If
1, files from all the sub directories are copied as well (if matching
the pattern). If O, files from sub directories are not copied.

4 Unused Must be 0.

Retries If the copy fails the command can retry to copy later. This
parameter tells the number of retries.

6 Variable for number of processed files This variable receives the number of files copied. This parameter
can be left blank.

7 Variable for number of failures This variable receives the number of failures. This parameter can be
left blank.

8 Log errors If a file cannot be copied then it is recorded in report file. This
parameter can be left blank.

9 Additional options Additional parameters:

"-pr" - show progress window
"-on" - overwrite file only if it is newer.

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS
3
4 Variable OPERATION "SELECT_FILE" (Variable for result = vFile, Input text/variable = *.txt, Parameter 1 =
Select File, Parameter 2 =, Parameter 3 = 0)
5 IF STRING _\Canceled==
6
Macro EXIT
7 ENDIF
8
° Variable SET "vDestinationFolder=", Message text="Type where to copy the selected file:"
10 ——
IF STRING _\Canceled==
1 Macro EXIT
12 ENDIF
13
14
Error message DISABLED
15
16 File COPY from "vFile" to "%vDestinationFolder%)\filecopy.txt" (Subfolders = No, Retries = 3, Variable for
number of processed files = vCopied, Variable for number of failures = \failed, Log errors =
%TEMP%\filecopy_failreport.txt, Additional options = -pr -on)
17 IF \Failed<=0
18 Message SHOW "Information" : "File was copied OK!" (other parameters: x = -100, y = -100, Window title
= Message, Buttons = OK, Timeout (seconds) = 0, Always on top =).
19 ELSE activate
20 Message SHOW "Error" : "File copy FAILED!" (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) = 0, Always on top =).
21 ENDIF
22 Error CLEAR
23

Error message ENABLED

Example (Plain Text):

<#> This macro copies file you select to the file "c:\filecopy.txt"
<#>
<cmds>

<#> Select file to copy:

<var_oper>(vFile,"*.txt",SELECT_FILE,"Select File","", "0")
<if_str>("_vCanceled==1")

<exitmacro>
<endif>

<#> Type destination folder:

<varset>("vDestinationFolder=","Type where to copy the selected file:")
<if_str>("_vCanceled==1")

<exitmacro>

<endif>

<#> Do not show error messages, we will handle errors programatically
<me_error_nodisplay>

<#> Copy file
<filecopy>("vFile","%vDestinationFolder%\filecopy.txt",0,0,3,vCopied,Wailed,"% TEMP%\filecopy_failreport.txt","-pr -on ")

<if>("Wrailed<=0")

<msg>(-100,-100,"File was copied OK!","Message",1,0,0)
<else>

<msg>(-100,-100,"File copy FAILED!","Message",1,0,2)
<endif>

<me_error_clear>
<me_error_display>

Commands & Syntax > Commands > File Mainpulation >

MOVE - < filemove >() ... [Pro]

File MOVE

<filemove>("Source","Destination”,Subfolders,Unused,Retries, Variable for number of processed files,Variable for number of

failures,"Log errors”,"Additional options")
Available in: Professional edition

This command movwes file(s).

Parameter name Parameter description

1 Source Full path to the file to move (e.g., "c:\mydocuments\original.doc").
The file path can contain wildcard characters (*?). In such the case
all the files matching the pattern are moved. Can be a static text or
variable containing text.

2 Destination Full path to the new file (e.g., "c:\mydocuments\copy.doc"). If the
FileSource contains wildcard characters the FileDestination must
specify directory (e.g., "c:\mydocuments") where multiple files are
moved.

3 Subfolders Takes effect only if the FileSource contains wildcard characters. If
1, files from all the sub directories are moved as well (if matching
the pattern). If O, files from sub directories are not moved.

4 Unused Must be 0.

Retries If the mowe fails the command can retry to mowve again. This
parameter tells the number of retries.

6 Variable for number of processed files This variable receives the number of files copied. This parameter
can be left blank.

7 Variable for number of failures This variable receives the number of failures. This parameter can be
left blank.

8 Log errors If a file cannot be mowed then it is recorded in report file. This
parameter can be left blank.

9 Additional options Additional parameters:

"-pr" - show progress window
"-on" - overwrite file only if it is newer.

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS
3 Variable OPERATION "SELECT _FILE" (Variable for result = VFile, Input text/variable = *.txt, Parameter 1 =
Select File, Parameter 2 =, Parameter 3 = 0)
4 IF STRING _\Canceled==
5
Macro EXIT
6 ENDIF
7

File MOVE from "vFile" to "c:\temp\" (Subfolders = No, Retries = 0, Variable for number of processed files =,
Variable for number of failures =, Log errors =, Additional options =)

Example (Plain Text):

<#> This macro moves file you select to "c:\temp\" folder
<#>

<cmds>

<var_oper>(vFile,"*.txt",SELECT_FILE,"Select File","", "0")
<if_str>("_vCanceled==1") <exitmacro> <endif>
<filemove>("vFile","c:\temp\",0,0,0,,,"","")

Commands & Syntax > Commands > File Mainpulation >

DELETE - < filedel >() ... [Free]

File DELETE

<filedel>("Source",Subfolders,Unused,Retries, Variable for number of processed files,Variable for number of failures,"Log

errors”,Show progress)
Available in: Free edition

This command deletes specified file(s).

Parameter name Parameter description

1 Source Full path to the file to delete (e.g., "c:\mydocuments\original.doc").
The file path can contain wildcard characters (*?). In such the case
all the files matching the pattern are deleted.

2 Subfolders Takes effect only if the File contains wildcard characters. If 1, files
from all the sub directories are deleted as well (if matching the
pattern). If O, files from sub directories are not deleted.

3 Unused Must be O.

4 Retries

5 Variable for number of processed files

6 Variable for number of failures

7 Log errors

8 Show progress

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3

File, Parameter 2 = , Parameter 3 = 0)
4 IF STRING _\Canceled==
5

Macro EXIT

6 ENDIF
7

Variable OPERATION "SELECT FILE" (Variable for result = VFile, Input text/variable = , Parameter 1 = Select

File DELETE "vFile" (Subfolders = No, Unused = 0, Retries =, Variable for number of processed files =,

Variable for number of failures =, Log errors =, Show progress =)

Example (Plain Text):

<#> This macro deletes the file you select

<#>

<cmds>

<var_oper>(\File,"",SELECT_FILE,"Select File","", "0")
<if_str>("_vCanceled==1") <exitmacro> <endif>
<filedel>("vFile",0,0)

http://www.perfectkeyboard.com

155

Commands & Syntax > Commands > File Mainpulation >

CREATE - < filecreate >() ... [Pro]

File CREATE
<filecreate>("File",Unused)
Available in: Professional edition

Creates a new empty file.

Parameter name Parameter description

1 File Full path to the file to create (e.g., "c:\mydocuments\empty.doc"). Can be a
static text or variable containing text.

2 Unused Must be 0.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

File CREATE "c:\newfile.txt"

Example (Plain Text):

<#> This example creates new empty file c:\newfile.txt
<#>

<cmds>

<filecreate>("c:\newfile.txt",0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

LOAD TEXT - < data_load >() ... [Pro]

File LOAD TEXT
<data_load>("Variable","File","Password")
Available in: Professional edition

This command loads (textual) data from file (whole the content) to the given variable.

Parameter name Parameter description
1 Variable Variable that receives the file content (text).
2 File Path to the file with data (e.g., "c:\mydocuments\data.txt").
3 Password Password used to decrypt the file content. The password must be the same that

was previously used to save data (for example, using ‘data_sawe' or ‘'data_crypt'
command). If incorrect password is provided then the command fails. Leave the
parameter empty if the file is not encrypted.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable OPERATION "SELECT FILE" (Variable for result = VFile, Input text/variable = , Parameter 1 = Select
File, Parameter 2 = , Parameter 3 = 0)

4 File LOAD TEXT from file "vFile" to "%VFileData%"

5

Message SHOW " : "vFileData" (other parameters: x = -100, y = -100, Window title = File Content, Buttons =
OK, Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This macro loads the file content to variable

<#>

<cmds>

<var_oper>(\File,"",SELECT_FILE,"Select File","", "0")
<data_load>("%WFileData%","vFile","")
<msg>(-100,-100,"vFileData","File Content",1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

SAVE TEXT - < data_save >() ... [Pro]

File SAVE TEXT
<data_save>("Data","File","Mode","Password")
Available in: Professional edition

Sawe textual data to file.

Parameter name Parameter description
1 Data Text to be saved (or variable containing text to be saved).
2 File Path to the file (e.g., "c:\mydocuments\data.txt").
3 Mode Can be one of the following values:

"A" - the data will be appended to the end of the file
"O" - the data will be written to the begin of the file

4 Password Password to encrypt the file content. Leave the parameter empty if file content
encryption is not required.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable OPERATION "SELECT FILE" (Variable for result = VFile, Input text/variable = , Parameter 1 = Select
File, Parameter 2 = , Parameter 3 = 0)

4 Variable SET "vData=%_wKeyReturn%%_\vCurrDate_ MMDDYYYY%", Message text=""

5

File SAVE TEXT "vData" to file "vFile

Example (Plain Text):

<#> This macro adds current date to a new line in the end of the file.
<#>

<cmds>

<var_oper>(\File,"",SELECT_FILE,"Select File","", "0")
<varset>("vData=%_\vKeyReturn%% _vCurrDate_ MMDDYYYY%","")
<data_save>("vData","vFile","A")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

INFO - < fileinfo >() ... [Pro]

File INFO

<fileinfo>("File","Information”,"Variable for result™)

Available in: Professional edition

This command retrieves information (size, creation time, last access time, last modification time) about specified file.

Parameter name

Parameter description

1 File

(Full) path to the file (e.g., "c:\mydocuments\file.doc").

2 Information

Type of the information to be retrieved. Can be one of the following values:

"SIZE" - retrieves file size

"TIME_WRITE_ISQO" - retrieves the last modification time in ISO format that can
be used for arithmetic and logic operations

"TIME_ACCESS_ISO" - retrieves the last access time in ISO format that can be
used for arithmetic and logic operations

"TIME_CREATE_ISQO" - retrieves the creation time in ISO format that can be used
for arithmetic and logic operations

"TIME_WRITE" - retrieves the last modification time

"TIME_ACCESS" - retrieves the last access time

"TIME_CREATE" - retrieves the creation time

"FILE_NAME" - retrieves the name of the file

"FILE_NAME_NO_EXTENSION" - retrieves the name of the file without extension
"FILE_EXTENSION" - retrieves the file extension

"FILE_PATH" - retrieves the file full path

3 Variable for result

Variable that receives the result.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable OPERATION "SELECT FILE" (Variable for result = VFile, Input text/variable = , Parameter 1 = Select
File, Parameter 2 = , Parameter 3 = 0)

4 IF FILE "%VFile%" Exist (0)

5 File INFO : sawe "Size" information of file "VFile" to variable "vFileSize"

6 File INFO : save "Last modified time" information of file "vFile" to variable "vFileTime"

7 Message SHOW " : "File size is: %WVFileSize% Last modification time is: %WileTime%" (other parameters:

x = -100, y = -100, Window title = File Info, Buttons = OK, Timeout (seconds) =, Always on top =).
8

ENDIF

Example (Plain Text):

<#> This macro retrieves information about the file you select

<cmds>

<var_oper>(\File,"",SELECT_FILE,"Select File","", "0")

<if file>("%\File%","EXIST","0")<#>

http://www.perfectkeyboard.com

<fileinfo>("File","SIZE","WileSize")
<fileinfo>("vFile","TIME_WRITE","WFileTime")
<msg>(-100,-100,"File size is: %WFileSize%
Last modification time is: %wFileTime%","File Info",1)<#>
<endif>

Commands & Syntax > Commands > File Mainpulation >

ENUMERATE - < file_enum >() ... [Pro]

File ENUMERATE
<file_enum>("Folder",Option,Variable array for enumerated items,Variable array size)
Available in: Professional edition

This command enumerates files/folders from the given folder using a defined mask (wildcards).

Parameter name Parameter description

1 Folder File/folder selection pattern containing wildcards. Example:
"c:\windows\a*.?if" or "c:\windows\sys*".

2 Option 1 - only subfolders are enumerated
2 - only files are enumerated
3 - both subfolders and files are enumerated

3 Variable array for enumerated items Variable (array) that receives files/folders from the Folder that match
the mask.

4 Variable array size Variable that receives the number of files/folders saved in the
VarFiles.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 File ENUMERATE "Files only" of "Folder=%_virolder_Temp%*.tmp" (Variable array for enumerated
items=VFiles, Variable array size=vNumOfFiles)

4 Message SHOW " : "There are %VvNumOfFiles% TMP files in "% _\Folder_Temp%" directory." (other
parameters: x = -100, y = -100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =
).

5 Variable SET "Wsg=_VStrEmpty", Message text=""

6 Loop BEGIN Repeat = VNumOfFiles

7 Variable OPERATION "STR_APPEND" (Variable for result = vMsg, Input text/variable = %vMsg%,

Parameter 1 = %_vKeyReturn%%wriles[_vLoopCounter0]%, Parameter 2 = , Parameter 3 = 0)
8 Loop END
9

Message SHOW " : "wMsg" (other parameters: x = -100, y = -100, Window title = Message, Buttons = OK,
Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This macro shows how to use file_enum' command.

<#>

<cmds>

<file_enum>("%_wFolder_Temp%*.tmp",2,Wiles, NumOfFiles)

<msg>(-100,-100,"There are %vNumOfFiles% TMP files in %_vQuoteChar%%_\Folder_Temp%% _vQuoteChar%
directory.","Message",1)

http://www.perfectkeyboard.com

<varset>("vMsg=_VStrEmpty","")

<begloop>(WWNumOfFiles)
<var_oper>(Wisg,"%vWMsg%",STR_APPEND,"%_\KeyReturn%%\wriles[vLoopCounter0]%","", "0")

<endloop>

<msg>(-100,-100,"vMsg","Message",1)

Commands & Syntax > Commands > File Mainpulation >

PRINT - < file_print >() ... [Pro]

File PRINT
<file_print>(File)
Available in: Professional edition

Prints specified file on a default printer.
Note: There must be a "Print" command associated with the document type in Windows.

Parameter name Parameter description

1 File Full path to the file to be printed.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

File PRINT "c:\MyDocuments\table.xIsx"

Example (Plain Text):

<#> This macro prints a file

<#>

<cmds>
<file_print>(c:\MyDocuments\table.xIsx)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

RENAME - < filerename >() ... [Pro]

File RENAME
<filerename>("File","New name",Unused,Unused)
Available in: Professional edition

This command renames specified file.

Parameter name Parameter description
1 File (Full) path to the file to copy (e.g., "c:\mydocuments\original.doc").
2 New name New name such as "backup.doc".
3 Unused Must be 0.
4 Unused Must be 0.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable OPERATION "SELECT _FILE" (Variable for result = VFile, Input text/variable = , Parameter 1 = Select
File, Parameter 2 = , Parameter 3 = 0)

4 IF STRING _\Canceled==

5 Macro EXIT

6 ENDIF

7

File RENAME vFile, New name = _renamed.txt,Unused = 0

Example (Plain Text):

<#> This macro renames file you select to "_renamed.txt".
<#>

<cmds>

<var_oper>(\File,"",SELECT_FILE,"Select File","", "0")
<if_str>("_vCanceled==1") <exitmacro> <endif>

<filerename>("\File","_renamed.txt",0,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

ZIP - < zip_createfile >() ... [Pro]

File ZIP
<zip_createfile>("Zip file","Files to archive",Subfolders,"Password")
Available in: Professional edition

This command archives one or multiple files to a single ZIP file.

Parameter name Parameter description
1 Zip file (Full) path to the ZIP file to be created. Example: c:\temp\zipfile.zip.
2 Files to archive (Full) file path or wildcard mask of files that will be included (zipped) to the ZIP

file. Example: c:\temp*.txt.

3 Subfolders If 1, also files from subfolders that match the "Input files mask" are included.
If O, the files from subfolders are not included.

4 Password If a password is provided then the zip file created is password protected.

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4

5 Folder CREATE "c:\temp\zip_sample"

6

7 File CREATE "c:\temp\zip_sample\filel.txt"
8 File CREATE "c:\temp\zip_sample\file2.txt"
9 File CREATE "c:\temp\zip_sample\file3.txt"
10

1 File ZIP "c:\temp\zip_sample*.txt" to "c:\temp\zip_sample\zipfile.zip", Subfolders = No, Password =
12

13

Folder OPEN open folder "c:\temp\zip_sample" in Windows Explorer.

Example (Plain Text):

<#> This example shows how to zip multiple files to a single ZIP file.
<#>
<cmds>

<#> Create folder for sample files

http://www.perfectkeyboard.com

<dircreate>("c:\temp\zip_sample",0)

<#> Create sample files

<filecreate>("c:\temp\zip_sample\filel.txt",0)
<filecreate>("c:\temp\zip_sample\file2.txt",0)
<filecreate>("c:\temp\zip_sample\file3.txt",0)

<#> Zip files to a zip file
<zip_createfile>("c:\temp\zip_sample\zipfile.zip","c:\temp\zip_sample*.txt",0, ")

<#> Open folder to see the results
<diropen>("c:\temp\zip_sample",0)

Commands & Syntax > Commands > File Mainpulation >

UNZIP - < zip_unzipfile >() ... [Pro]

File UNZIP
<zip_unzipfile>("Zip file","Destination","Mask files","Password")
Available in: Professional edition

This command extracts from ZIP file to a folder the files that match defined mask.

Parameter name Parameter description
1 Zip file (Full) path to an existing ZIP file. Example: c:\temp\zipfile.zip.
2 Destination (Full) path to a folder where the files contained in the ZIP file will be extracted. If

the folder does not exist then it is created automatically. Example:
c:\temp\unzipDir.

3 Mask files Wildcard mask to define what files will be extracted. Only mask matching files
are extracted. Example: *.txt.

4 Password If the zip file is password protected then the password parameter is needed to
successfully unzip the file.

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4

5 Folder CREATE "c:\temp\zip_sample"

6

7 File CREATE "c:\temp\zip_sample\filel.txt"

8 File CREATE "c:\temp\zip_sample\file2.txt"

9 File CREATE "c:\temp\zip_sample\file3.txt"

10

11 File ZIP "c:\temp\zip_sample*.txt" to "c:\temp\zip_sample\zipfile.zip", Subfolders = No, Password =
12

13 File UNZIP to "c:\temp\zip_sample\unzip" from "c:\temp\zip_sample\zipfile.zip", Mask files = *.txt, Password
14

15

Folder OPEN open folder "c:\temp\zip_sample\unzip" in Windows Explorer.

http://www.perfectkeyboard.com

Example (Plain Text):

<#> This example shows how to unzip existing ZIP file.
<#>
<cmds>

<#> Create folder for sample files
<dircreate>("c:\temp\zip_sample",0)

<#> Create sample files

<filecreate>("c:\temp\zip_sample\filel.txt",0)
<filecreate>("c:\temp\zip_sample\file2.txt",0)
<filecreate>("c:\temp\zip_sample\file3.txt",0)

<#> Zip files to a zip file
<zip_createfile>("c:\temp\zip_sample\zipfile.zip","c:\temp\zip_sample*.txt",0)

<#> Unzip file to folder
<zip_unzipfile>("c:\temp\zip_sample\zipfile.zip","c:\temp\zip_sample\unzip”,"*.txt")

<#> Open folder to see the results
<diropen>("c:\temp\zip_sample\unzip",0)

Commands & Syntax > Commands > File Mainpulation >

CREATE SELF-EXTRACTING ZIP - < zip_create_sfx >() ... [Pro]

File CREATE SELF-EXTRACTING ZIP

<zip_create_sfx>("Self-extracting file","Files to archive",Subfolders,"Startup file",Option,"Password")

Available in: Professional edition

This command archives one or multiple files to a single self-extracting ZIP file.

Parameter name Parameter description

1 Self-extracting file (Full) path to the self-extracting ZIP file to be created. Example:
c:\temp\zipfile-se.exe.

2 Files to archive (Full) file path or wildcard mask of files that will be included (zipped) to the ZIP
file. Example: c:\temp*.txt.

3 Subfolders If 1, also files from subfolders that match the "Input files mask" are included.
If O, the files from subfolders are not included.

4 Startup file Full path of the file to automatically open when the self-extracting ZIP file finishes
files extraction. Example: c:\temp\readme.txt.

5 Option If 1, the files are extracted automatically to the default temporary folder.
If 0, the user will select the folder where to extract the files.

6 Password If a password is provided then the exe file created is password protected.

Example (Macro Steps):

File CREATE SELF-EXTRACTING ZIP "c:\temp\zip_sample\zipfile-selfextract.exe" from

"c:\temp\zip_sample*.txt", Subfolders = No, Startup file = c:\temp\zip_sample\filel.txt, Option = User will

1
2
3 Macro execution: ONLY COMMANDS
4
5 Folder CREATE "c:\temp\zip_sample"
6
7 File CREATE "c:\temp\zip_sample\filel.txt"
8 File CREATE "c:\temp\zip_sample\file2.txt"
9 File CREATE "c:\temp\zip_sample\file3.txt"
10
11
select destination folder, Password =
12
13

Folder OPEN open folder "c:\temp\zip_sample" in Windows Explorer.

http://www.perfectkeyboard.com

Example (Plain Text):

<#> This example shows how to create self-extracting ZIP file.
<#>
<cmds>

<#> Create folder for sample files
<dircreate>("c:\temp\zip_sample",0)

<#> Create sample files

<filecreate>("c:\temp\zip_sample\filel.txt",0)
<filecreate>("c:\temp\zip_sample\file2.txt",0)
<filecreate>("c:\temp\zip_sample\file3.txt",0)

<#> Create self-extracting ZIP file
<zip_create_sfx>("c:\temp\zip_sample\zipfile-selfextract.exe”,"c:\temp\zip_sample*.txt",0,"c:\temp\zip_sample\filel.txt",0)

<#> Open folder to see the results
<diropen>("c:\temp\zip_sample",0)

Commands & Syntax > Commands > File Mainpulation >

INI WRITE - < ini_file_write >() ... [Pro]

File .INI WRITE
<ini_file_write>("Section","Key","Data","File","Password")
Available in: Professional edition

The command writes data to a INI file. INI files internal structure look like this:

[Section]

Keyl=Some data.
Key2=0ther data.
KeyN=Even more data.

[Other Section]
Keyl=....

The "ini_file_write" command writes data to given key in given section.

Parameter name Parameter description
1 Section Section name in INI file.
2 Key Name of the key in the Section.
3 Data Data to be written to the given key in given section.
4 File (Full) path to the INI file.
5 Password Password to encrypt the data. Leave the parameter empty if data encryption is
not required.

Example (Macro Steps):

http://www.perfectkeyboard.com

2

3 Macro execution: ONLY COMMANDS

4

5 File .INI WRITE Section = "sectionl", Key = "keyl", Data = "Valuel", File = "% TEMP%\example.ini",
Password = ""

6

7 File .INI READ Section = "sectionl", Key = "key1", Variable to save data = "Walue", File =
"% TEMP%\example.ini", Password = ""

8

° Message SHOW "Information" : "Walue" (other parameters: x = -100, y = -100, Window title = Message,
Buttons = OK, Timeout (seconds) = 0, Always on top =).

10

11

File DELETE "%TEMP%)\example.ini"* (Subfolders = No, Unused = 0, Retries = 3, Variable for number of
processed files =, Variable for number of failures =, Log errors =, Show progress = No)

Example (Plain Text):

<#> This sample writes and reads data from INI file.
<#>
<cmds>

<#> Write some data to the INI file first
<ini_file_write>("section1","key1","Valuel","% TEMP%\example.ini")

<#> Read the data then...
<ini_file_read>("sectionl","key1","Walue","% TEMP%\example.ini")

<#> ... and show the data.
<msg>(-100,-100,"Walue","Message",1,0,0)

<#> In the end let's delete the ini file.
<filedel>("% TEMP%\example.ini",0,0,3,,,"",0)

Commands & Syntax > Commands > File Mainpulation >

INI READ - < ini_file_read >() ... [Pro]

File .INI READ

<ini_file_read>("Section","Key","Variable to save data","File","Password")

Available in: Professional edition

The command reads data from a INI file. INI files internal structure look like this:

[Section]
Keyl=Some data.
Key2=0ther data.

KeyN=Even more data.

[Other Section]
Keyl=....

The "ini_file_read" command reads data from given key in given section.

Parameter name

Parameter description

1 Section Section name in INI file.

2 Key Name of the key in the Section.

3 Variable to save data Variable that receives data retrieved from the given key in given section.

4 File (Full) path to the INI file.

5 Password Password used to decrypt the data. The password must be the same that was

previously used to encrypt data (in 'ini_file_write' or 'data_crypt' command). If
incorrect password is provided then the command fails. Leave the parameter
empty if the data are not encrypted.

Example (Macro Steps):

http://www.perfectkeyboard.com

2

3 Macro execution: ONLY COMMANDS

4

5 File .INI WRITE Section = "sectionl", Key = "keyl", Data = "Valuel", File = "% TEMP%\example.ini",
Password = ""

6

7 File .INI READ Section = "sectionl", Key = "key1", Variable to save data = "Walue", File =
"% TEMP%\example.ini", Password = ""

8

° Message SHOW "Information" : "Walue" (other parameters: x = -100, y = -100, Window title = Message,
Buttons = OK, Timeout (seconds) = 0, Always on top =).

10

11

File DELETE "%TEMP%)\example.ini"* (Subfolders = No, Unused = 0, Retries = 3, Variable for number of
processed files =, Variable for number of failures =, Log errors =, Show progress = No)

Example (Plain Text):

<#> This sample writes and reads data from INI file.
<#>
<cmds>

<#> Write some data to the INI file first
<ini_file_write>("section1","key1","Valuel","% TEMP%\example.ini")

<#> Read the data then...
<ini_file_read>("sectionl","key1","Walue","% TEMP%\example.ini")

<#> ... and show the data.
<msg>(-100,-100,"Walue","Message",1,0,0)

<#> In the end let's delete the ini file.
<filedel>("% TEMP%\example.ini",0,0,3,,,"",0)

Commands & Syntax > Commands > File Mainpulation >

ENCRYPT/DECRYPT - < file_encryption >() ... [Pro]

File ENCRYPT/DECRYPT

<file_encryption>("Input","Output”,Information, Encryption bit strength,"Password")

Available in: Professional edition

This command encrypts/decrypts a single file.

Parameter name Parameter description

1 Input (Full) path to a file that is to be encrypted/decrypted. Example:
c:\temp\myPrivatelnfo.txt.

2 Output (Full) path to a file that is created as a result of the encryption/decryption of the
"Input File". Example: c:\temp\myPrivatelnfo.txt.aes.

3 Information This parameter can be one of these:
ENCRYPT_AES - the input file is encrypted using AES.
DECRYPT_AES - the input file (previously encrypted using ENCRYPT_AES) is
decrypted.

4 Encryption bit strength Strength of the encryption. These values are supported: 128, 192, 256.

5 Password User defined password that is used to encrypt/decrypt the input file. A file
encrypted by a password can be successfully decrypted again only if the same
password is used.

Example (Macro Steps):

http://www.perfectkeyboard.com

2

3 Macro execution: ONLY COMMANDS

4

5 Folder CREATE "c:\temp\file_encryption_sample"

6

7 File SAVE TEXT "This is a sample file." to file "c:\temp\file_encryption_sample\l.file_original.txt

8

° File ENCRYPT/DECRYPT Input = "c:\temp\file_encryption_sample\l.file_original.txt", Qutput =
"c:\temp\file_encryption_sample\2.file_encrypted.txt", Information = "ENCRYPT_AES", Encryption bit strength
="128"

10

1 File ENCRYPT/DECRYPT Input = "c:\temp\file_encryption_sample\2.file_encrypted.txt", Output =
"c:\temp\file_encryption_sample\3.file_decrypted.txt", Information = "DECRYPT_AES", Encryption bit strength
="128"

12

13

Folder OPEN open folder "c:\temp\file_encryption_sample" in Windows Explorer.

Example (Plain Text):

<#> This simple example shows how to encrypt/decrypt file.
<#>
<cmds>

<#> Create folder for sample files
<dircreate>("c:\temp\file_encryption_sample",0)

<#> Create sample file
<data_save>("This is a sample file.","c:\temp\file_encryption_sample\1.file_original.txt","")

<#> Now encrypt the file...
<file_encryption>("c:\temp\file_encryption_sample\l.file_original.txt","c:\temp\file_encryption_sample\2.file_encrypted.txt",E
NCRYPT_AES,128,"nyrangers")

<#> ...and decrypt again
<file_encryption>("c:\temp\file_encryption_sample\2.file_encrypted.txt","c:\temp\file_encryption_sample\3.file_decrypted.txt"
,DECRYPT_AES,128,"nyrangers")

<#> Open folder to see the results
<diropen>("c:\temp\file_encryption_sample”,0)

Commands & Syntax > Commands > File Mainpulation >

Parse Path - < file_path_parse >() ... [Pro]

File Parse Path
<file_path_parse>("File path",Variable for Drive or Server,Variable for Folder,Variable for Name,Variable for Extension)

Available in: Professional edition
This command parses (full qualified) file path to these parts: drive or network server, folder, file name, and file extension.

Parameter name Parameter description

1 File path File path to be parsed. For example: ¢:\my folder\subl\sub2\results.doc

2 Variable for Drive or Server Variable that receives drive or network server address part of the file path. For
example: ¢

3 Variable for Folder Variable that receives folder part of the file path. For example: my
folder\sub1\sub2

4 Variable for Name Variable that receives file name part of the file path. For example: results

5 Variable for Extension Variable that receives extension part of the file path. For example: doc

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 File Parse Path File path = "c:\program files\any program\application.exe", Variable for Drive or Server =
"VDrive", Variable for Folder = "viFolder", Variable for Name = "vName", Variable for Extension = "vExt"

4 Message SHOW "Information” : "Drive: %VvDrive% Folder: %volder% File: %vName% Extension: %VvExt%"
(other parameters: x = -100, y = -100, Window title =, Buttons = OK, Timeout (seconds) = 0, Always on top =
No).

Example (Plain Text):

<#>This macro breaks 'c:\program files\any program\application.exe' file path to parts
<cmds>

<file_path_parse>("c:\program files\any program\application.exe" ,vDrive,/Folder,vName,VEXxt)
<msg>(-100,-100,"Drive: %\Drive%

Folder: %Folder%

File: %vName%

Extension: %vExt%","",1,0,0,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

Convert HTML to XML - < file_htmi2xml >() ... [Pro]

File Convert HTML to XML
<file_htmI2xml>("HTML File","XML File")
Available in: Professional edition

This command converts HTML file to XML file. HTML files are not always XML syntax compliant. This command makes an
HTML file XML compliant so that XML maco commands can be used to parse the file content.

Parameter name Parameter description
1 HTML File (Full) path to the input HTML file.
2 XML File (Full) path to the output XML file.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 "http://www.macrotoolworks.com" (Login name=) to file "macrotoolworks.html"

4 File Convert HTML to XML Convert HTML file macrotoolworks.html to XML file macrotoolworks.xml

5 File path = "macrotoolworks.xml", File handle variable = "vXmIDoc", Root element handle
variable = "vXmlIDocRoot", Password = ""

6 (Element handle variable = "%vXmIDoc%", Path =
"root\html\body\di\dindi\dinh1\a", Element handle variable = "vTestElem")

7 (Element handle variable = "%VTestElem%", Attribute name = "title", Variable for result =
"vHtmIPageTitle")

8

Message SHOW "Information” : "%vHtmIPageTitle%" (other parameters: x = -100, y = -100, Window title =,
Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Example (Plain Text):

<#> This example shows how to use HTML to XML command.

<H#>

<cmds>

<download>("macrotoolworks.html","http://mww.macrotoolworks.com","","")
<file_htmI2xml>("macrotoolworks.html","macrotoolworks.xml")
<xml_file_open>("macrotoolworks.xml",vXmIDoc,vXmIDocRoot)
<xml_element_navigate>(%vXmIDoc%,"root\html\body\diAdi\diAdivh1\a",vTestElem)
<xml_attribute_get>(%VvTestElem%,title,vHtmIPageTitle)
<msg>(-100,-100,"%wHtmIPageTitle%","",1,0,0,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

CSV Load - < csv_file_load >() ... [Pro]

File CSV Load

<csv_file_load>("File path",File handle variable)

Available in: Professional edition

This command loads CSV file data. When data are loaded then "get record" command can be used in a loop to get fields for

each record.

Parameter name

Parameter description

1 File path

(Full) path to the input CSV file.

2 File handle variable

Variable that receives CSV file handle. This variable is used as input parameter to
"get record” command.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

File CSV Load c:\data\filel.csv, File handle variable = VCsvFile,%p3_name =

Repeat steps UNTIL "1" (Counter variable initial value = "i=0", Counter loop increment = "1")

File CSV Get Record Fields (File handle variable = "vCsvFile", Variable array for fields = "vFields",

Variable for number of fields = "vFieldsNum")

10

1 ENDIF

12

IF %VFieldsNum%<=0

Repeat steps BREAK

Repeat steps UNTIL "%r%

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

CSV Get Record Fields - < csv_get_record >() ... [Pro]

File CSV Get Record Fields
<csv_get_record>(File handle variable,Variable array for fields,Variable for number of fields)
Available in: Professional edition

This command retrieves one record from CSV file. Call the command multiple times in order to read all records.
Note: CSV (comma separated value) file is a textual file consisting of multiple rows (records) where on each row there are

multiple entries (fields) separated by comma:
Read more here: https://en.wikipedia.org/wiki/Comma-separated values

Parameter name Parameter description
1 File handle variable Variable containing CSV file handle obtained by "CSV load data" command.
2 Variable array for fields Variable array that receives fields for the current record.
3 Variable for number of fields Variable that receives number of fields obtained. If this value is 0 then no
more data is in the CSV file.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3

4 File CSV Load c:\data\filel.csv, File handle variable = VCsvFile,%p3_name =

5

6 Repeat steps UNTIL "1" (Counter variable initial value = "i=0", Counter loop increment = "1")

7 File CSV Get Record Fields (File handle variable = "vCsvFile", Variable array for fields = "vFields",
Variable for number of fields = "vFieldsNum™)

8 IF 9%6vFieldsNum%<=0

9

10 Repeat steps BREAK

11 ENDIF

12

Repeat steps UNTIL "%r%

http://www.perfectkeyboard.com

Commands & Syntax > Commands > File Mainpulation >

SHORTCUT - < file_shortcut >() ... [Pro]

File SHORTCUT

<file_shortcut>("Shortcut file","File path","Parameters","Description”,"Icon file","Ilcon index")

Available in: Professional edition

This command creates a shortcut file (link - .Ink file) to a file or folder.

Parameter name Parameter description

1 Shortcut file Full path to the newly created shortcut file (e.g., "c:\mydocuments\shortcut.Ink™)
or just a shortcut file name - in such case the shortcut file will be created in the
same folder where macro file is located).

2 File path Full path to the file or folder the shortcut is created for. If just file or folder name is
provided then it is expected the file or folder is located in the same folder where
macro file is located).

3 Parameters Parameters passed to the file when the shortcut is open. This typically applies to
executables.

4 Description Description of the shortcut.

5 Icon file Full path to the icon file. If just the icon file name is provided then it is expected
the file is located in the same folder where macro file is located).

6 Icon index Index of the icon within the icon file (if the file contains multiple icons).

Example (Macro Steps):

Example (Plain Text):

File SHORTCUT "ShortcutToNotesDoc.Ink" to "c:\my documents\notes.doc" (Parameters=)

<#> This example shows how to create a shortcut file (.Ink) to other file or folder
<file_shortcut>("ShortcutToNotesDoc.Ink","c:\my documents\notes.doc","","Notes document","","0")

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Folder Manipulation

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Folder Manipulation >

OPEN - < diropen >() ... [Pro]

Folder OPEN
<diropen>("Folder",Window state)
Available in: Professional edition

Opens directory in Windows Explorer.

Parameter name Parameter description
1 Folder Full path to the directory to be opened (e.g., "c:\mydocuments").
2 Window state The state of the window: O - Normal 1 - Maximized 2 - Minimized

Example (Macro Steps):

2 Macro execution: ONLY COMMANDS

Folder OPEN open folder "c:\" in Windows Explorer.

Example (Plain Text):

<#> This macro opens directory "c:\"
<#>

<cmds>

<diropen>("c:\",1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Folder Manipulation >

CREATE - < dircreate >() ... [Free]

Folder CREATE
<dircreate>("Folder",Unused)
Available in: Free edition

Creates new directory.

Parameter name Parameter description
1 Folder Full path to the directory to be created (e.g., "c:\mydocuments\new").
2 Unused Must be 0.

Example (Macro Steps):

2 Macro execution: ONLY COMMANDS

Folder CREATE "c:\newdir\temp"

Example (Plain Text):

<#> This macro creates new directory "c:\newdir\temp"
<#>

<cmds>

<dircreate>("c:\newdir\temp",0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Folder Manipulation >

DELETE - < dirdel >() ... [Free]

Folder DELETE

<dirdel>("Source",Unused,Retries,Variable for number of processed files,Variable for number of failures,"Log errors”,Show
progress)

Available in: Free edition

Deletes directory including all subdirectories. The directory doesn't have to be empty - all the files in the directory are
deleted.

Parameter name Parameter description
Source Full path to the directory to delete (e.g., "c:\olddata").
Unused Must be 0.
Retries

Variable for number of processed files

Variable for number of failures

Log errors

~N~Njojlolb~]lwIN]E

Show progress

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW " : "Select folder you want to delete." (other parameters: x = 100, y = 100, Window title =
Message, Buttons = None, Timeout (seconds) =, Always on top =).

4 Variable OPERATION "SELECT_FOLDER" (Variable for result = vDir, Input text/variable = , Parameter 1 =
Select Folder, Parameter 2 = , Parameter 3 = 0)

5 IF STRING _vCanceled==

6

Macro EXIT

7 ENDIF

8 Message CLOSE

9 Message SHOW " : "Folder delete process is in progress. Please wait...." (other parameters: x = 100, y =
100, Window title = Message, Buttons = None, Timeout (seconds) =, Always on top =).

10 Folder DELETE "vDir* (Unused = 0, Variable for number of processed files =, Variable for number of failures =
, Log errors =, Show progress =)

11

Message CLOSE

Example (Plain Text):

<#> This macro deletes directory you select

http://www.perfectkeyboard.com

<#>
<cmds>

<msg>(100,100,"Select folder you want to delete.","Message",0)
<var_oper>(\Dir,"",SELECT_FOLDER,"Select Folder","", "0")
<if_str>("_vCanceled==1")

<exitmacro>
<endif>
<msgoff>

<msg>(100,100,"Folder delete process is in progress. Please wait....","Message",0)
<dirdel>("vDir",0)
<msgoff>

Commands & Syntax > Commands > Folder Manipulation >

COPY - < dircopy >() ... [Pro]

Folder COPY

<dircopy>("Source","Destination”,Subfolders,Unused, Retries, Variable for number of processed files,Variable for number of

failures,"Log errors”,"Additional options")
Available in: Professional edition

Copies directory including all subdirectories. The command continues copying files even if some files fails to be copied.
Failed files are reported in report file and also number of failures can be saved in user defined variable so that errors can be

handled programmatically.

Parameter name Parameter description

1 Source Full path to the source directory (e.g., "c:\mydocuments").

2 Destination Full path to the destination directory (e.g., "c:\backup™).

3 Subfolders Must be O.

4 Unused Must be O.

5 Retries If the copy fails the command can retry to copy later. This
parameter tells the number of retries.

6 Variable for number of processed files This variable receives the number of files copied. This parameter
can be left blank.

7 Variable for number of failures This variable receives the number of failures. This parameter can be
left blank.

8 Log errors If a file cannot be copied then it is recorded in report file. This
parameter can be left blank.

9 Additional options Additional parameters: "-pr" - show progress window "-on" -
overwrite file only if it is newer.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

Macro execution: ONLY COMMANDS

Message SHOW " : "Select folder you want to copy." (other parameters: x = 100, y = 100, Window title =
Message, Buttons = None, Timeout (seconds) =, Always on top =).

Variable OPERATION "SELECT_FOLDER" (Variable for result = vDirSource, Input text/variable = , Parameter
1 = Select Source Folder, Parameter 2 = , Parameter 3 = 0)

Procedure CALL: ExitOnCancel with parameters ()
Message CLOSE

Message SHOW " : "Select destination folder." (other parameters: x = 100, y = 100, Window title =
Message, Buttons = None, Timeout (seconds) =, Always on top =).

Variable OPERATION "SELECT_FOLDER" (Variable for result = vDirDest, Input text/variable = , Parameter 1
= Select Destination Folder, Parameter 2 = , Parameter 3 = 0)

Procedure CALL: ExitOnCancel with parameters ()
Message CLOSE

Message SHOW " : "Folder copy is in progress. Please wait...." (other parameters: x = 100, y = 100,
Window title = Message, Buttons = None, Timeout (seconds) =, Always on top =).

Folder COPY from "vDirSource" to "vDirDest" (Subfolders = No, Retries = 3, Variable for number of processed
files = , Variable for number of failures = viail, Log errors = % TEMP%\DirCopyFailuresReport.txt, Additional
options = -pr -on)

Message CLOSE

Procedure BEGIN: ExitOnCancel with parameters ()
IF STRING _\Canceled==1
Macro EXIT
ENDIF

Procedure END

Example (Plain Text):

<#> This macro copies directory you select to other directory you select.

<#>
<cmds>

<msg>(100,100,"Select folder you want to copy.","Message",0)
<var_oper>(WDirSource,"",SELECT_FOLDER,"Select Source Folder","", "0")
<proc_call>(ExitOnCancel,)

<msgoff>

<msg>(100,100,"Select destination folder.","Message",0)

<var_oper>(WDirDest,"",SELECT_FOLDER,"Select Destination Folder","", "0")
<proc_call>(ExitOnCancel,)
<msgoff>

<msg>(100,100,"Folder copy is in progress. Please wait....","Message",0)
<dircopy>("vDirSource","vDirDest",0,0,3,,vFail,"% TEMP%\DirCopy FailuresReport.txt","-pr -on ")
<msgoff>

<#>

<proc_def _begin>(ExitOnCancel,)

<if_str>("_vCanceled==1")
<exitmacro>

<endif>

<proc_def _end>

<#>

Commands & Syntax > Commands > Folder Manipulation >

MOVE - < dirmove >() ... [Pro]

Folder MOVE

<dirmove>("Source","Destination”,Subfolders,Unused, Retries,Variable for number of processed files,Variable for number of
failures,"Log errors”,"Additional options")

Available in: Professional edition

Mowes directory including all subdirectories.

Parameter name Parameter description
Source Full path to the source directory (e.g., "c:\mydocuments").
Destination Full path to the destination directory (e.g., "c:\newdocs").
Subfolders Must be O.
Unused Must be O.
Retries

Variable for number of processed files

Variable for number of failures

Log errors

OQloNjojolbd]|lwN]F

Additional options

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

Macro execution: ONLY COMMANDS

Message SHOW " : "Select folder you want to mowve." (other parameters: x = 100, y = 100, Window title =
Message, Buttons = None, Timeout (seconds) =, Always on top =).

Variable OPERATION "SELECT_FOLDER" (Variable for result = vDirSource, Input text/variable = , Parameter
1 = Select Source Folder, Parameter 2 = , Parameter 3 = 0)

Procedure CALL: ExitOnCancel with parameters ()
Message CLOSE

Message SHOW " : "Select destination folder." (other parameters: x = 100, y = 100, Window title =
Message, Buttons = None, Timeout (seconds) =, Always on top =).

Variable OPERATION "SELECT_FOLDER" (Variable for result = vDirDest, Input text/variable = , Parameter 1
= Select Destination Folder, Parameter 2 = , Parameter 3 = 0)

Procedure CALL: ExitOnCancel with parameters ()
Message CLOSE

Message SHOW " : "Directory mowe is in progress. Please wait...." (other parameters: x = 100, y = 100,
Window title = Message, Buttons = None, Timeout (seconds) =, Always on top =).

Folder MOVE from "vDirSource" to "vDirDest" (Subfolders = No, Retries =, Variable for number of processed
files =, Variable for number of failures =, Log errors =, Additional options =)

Message CLOSE

Procedure BEGIN: ExitOnCancel with parameters ()
IF STRING _\Canceled==1
Macro EXIT
ENDIF

Procedure END

Example (Plain Text):

<#> This macro mowves directory you select to other directory you select.

<#>
<cmds>

<msg>(100,100,"Select folder you want to mowe.","Message",0)
<var_oper>(WDirSource,"",SELECT_FOLDER,"Select Source Folder","", "0")
<proc_call>(ExitOnCancel,)

<msgoff>

<msg>(100,100,"Select destination folder.","Message",0)
<var_oper>(vDirDest,"",SELECT FOLDER,"Select Destination Folder","", "0")

<proc_call>(ExitOnCancel,)

<msgoff>

<msg>(100,100,"Directory mowe is in progress. Please wait....","Message",0)
<dirmove>("vDirSource","vDirDest",0,0)

<msgoff>

<#>

<proc_def _begin>(ExitOnCancel,)

<if_str>("_vCanceled==1")
<exitmacro>

<endif>

<proc_def _end>

<#>

Commands & Syntax > Commands > Folder Manipulation >

Recycle bin EMPTY - < recbinempty > ... [Pro]

Folder Recycle bin EMPTY
<recbinempty>
Available in: Professional edition

This command clears the content of the Windows recycle bin.

Example (Macro Steps):

Folder Recycle bin EMPTY

Example (Plain Text):

<#> This example clears recycle bin
<recbinempty>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Folder Manipulation >

RENAME - < dirrename >() ... [Pro]

Folder RENAME
<dirrename>("Folder","New name",Unused,Unused)
Available in: Professional edition

Renames directory specified.

Parameter name Parameter description
1 Folder (Full) path to the source directory (e.g., "c:\mydocuments").
2 New name New name of the directory (for example, "mydocuments_old").
3 Unused Must be 0.
4 Unused Must be 0.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW " : "Select folder you want to rename." (other parameters: x = 100, y = 100, Window title =
Message, Buttons = None, Timeout (seconds) =, Always on top =).

4 Variable OPERATION "SELECT_FOLDER" (Variable for result = vDirSource, Input text/variable = , Parameter
1 = Select Source Folder, Parameter 2 = , Parameter 3 = 0)

5 Procedure CALL: ExitOnCancel with parameters ()

6 Message CLOSE

7 Folder RENAME vDirSource, New name = RENAMED,Unused = 0

8

9 Procedure BEGIN: ExitOnCancel with parameters ()

10 IF STRING _\Canceled==1

1 Macro EXIT

12 ENDIF

13 Procedure END

14

Example (Plain Text):

<#> This macro renames directory you select.
<H#>
<cmds>

http://www.perfectkeyboard.com

<msg>(100,100,"Select folder you want to rename.","Message",0)
<var_oper>(WDirSource,"",SELECT_FOLDER,"Select Source Folder","", "0")
<proc_call>(ExitOnCancel,)

<msgoff>

<dirrename>("vDirSource","RENAMED",0,0)

<#>

<proc_def_begin>(ExitOnCancel,)

<if_str>("_vCanceled==1")
<exitmacro>

<endif>

<proc_def_end>

<#>

Commands & Syntax > Commands > Folder Manipulation >

ENCRYPT/DECRYPT - < dir_encryption >() ... [Pro]

Folder ENCRYPT/DECRYPT
<dir_encryption>("Input","Output”,Operation,Encryption bit strength,"Password")
Available in: Professional edition

This command encrypts/decrypts all files within an input directory (folder) including all sub-folders. Encrypted files are
located in output directory. An extension ".aes" is added to the encrypted files. For example, file "Inwice_01256.doc" is
encrypted to "Invoice_01256.doc.aes".

Parameter name Parameter description

1 Input (Full) path to a directory (folder) that is to be encrypted/decrypted. Example:
"c:\myPrivateDocuments".

2 Output Directory (folder) where encrypted/decrypted files are located. Example:
"c:\myPrivateDocuments_Encrypted".

3 Operation This parameter can be one of these:
ENCRYPT_AES - the files are encrypted using AES.
DECRYPT_AES - the files (previously encrypted using ENCRYPT_AES) are

decrypted.
4 Encryption bit strength Strength of the encryption. These values are supported: 128, 192, 256.
5 Password User defined password that is used to encrypt/decrypt the files. A directory

encrypted by a password can be successfully decrypted again only if the same
password is used.

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4

5 Folder CREATE "c:\temp\dir_encryption_sample"

6

7 File SAVE TEXT "This is a sample file 1." to file "c:\temp\dir_encryption_sample\1l.file_original.txt

8 File SAVE TEXT "This is a sample file 2." to file "c:\temp\dir_encryption_sample\2.file_original.txt

9 Folder ENCRYPT/DECRYPT Input = "c:\temp\dir_encryption_sample", Output ="
c:\temp\dir_encryption_sample_Out", Operation = " ENCRYPT_AES", Encryption bit strength = "128"

10

11

Folder OPEN open folder "c:\temp\dir_encryption_sample_Out" in Windows Explorer.

Example (Plain Text):

http://www.perfectkeyboard.com

<#> This example shows how to encrypt whole folder.
<#> The second example shows how to decrypt it again.
<cmds>

<#> Create folder for sample files
<dircreate>("c:\temp\dir_encryption_sample",0)

<#> Create sample files
<data_save>("This is a sample file 1.","c:\temp\dir_encryption_sample\l.file_original.txt","")
<data_save>("This is a sample file 2.","c:\temp\dir_encryption_sample\2.file_original.txt","")

<dir_encryption>("c:\temp\dir_encryption_sample”, "c:\temp\dir_encryption_sample_Out", ENCRYPT_AES,128,"dirpwd")

<#> Open folder to see the results
<diropen>("c:\temp\dir_encryption_sample_Out",0)

Commands & Syntax > Commands >

Keyboard

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

Key EXTENDED - < extkey > ... [Pro]

Keyboard Key EXTENDED
<extkey>
Available in: Professional edition

This command tells that following key (a 'key' command) is an extended key.

Example (Macro Steps):

Keyboard Key EXTENDED
Key Enter

Example (Plain Text):

<#>This macro has the same effect as hitting 'Enter' key on numeric pad
<extkey><enter>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

Insert NEW LINE - < newline > ... [Pro]

Keyboard Insert NEW LINE
<newline>
Available in: Professional edition

This command inserts a new line (sends "Enter" keystroke to the currently active application).

Example (Macro Steps):

Keyboard Insert NEW LINE

Example (Plain Text):

<#> This macro inserts new line
<newline>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

BLOCK - < keys_block > ... [Pro]

Keyboard BLOCK
<keys_block>
Available in: Professional edition

This command blocks keyboard keys. It can be used when it is necessary to disable keyboard input during macro
execution, for example, before "wait for key" command ("waitfor"). If it is required to disable keyboard and mouse input
during whole macro execution then it is also possible to use "Lock keyboard and mouse while macro is running" option in
the macro settings tab. To unblock keyboard, use "keys_unblock” command.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW "Information” : "Waiting untill 'a' key is pressed...." (other parameters: x = 32, y = 32, Window
title = Message, Buttons = None, Timeout (seconds) = 0, Always on top = No).

4 Keyboard BLOCK

5 WAIT FOR Object = "KEY", Event = "PRESS", Parameter = "a", Timeout (seconds) = "50", Exact = "0"

6 WAIT FOR Object = "KEY", Event = "RELEASE", Parameter = "a", Timeout (seconds) = "50", Exact = "0"

7 Keyboard UNBLOCK

8

Message CLOSE

Example (Plain Text):

<#> This macro shows how to use 'keys_block' and 'keys_unblock' commands
<cmds>

<msg>(32,32,"Waiting untill ‘a’ key is pressed....","Message",0,0,0,0)
<keys_block>

<waitfor>("KEY","PRESS","a",50,0)

<waitfor>("KEY","RELEASE","a",50,0)

<keys_unblock>

<msgoff>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

UNBLOCK - < keys_unblock > ... [Pro]

Keyboard UNBLOCK
<keys_unblock>
Available in: Professional edition

This command unblock keyboard keys after a previous use of "keys_block" command.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW "Information” : "Waiting untill 'a' key is pressed...." (other parameters: x = 32, y = 32, Window
title = Message, Buttons = None, Timeout (seconds) = 0, Always on top = No).

4 Keyboard BLOCK

5 WAIT FOR Object = "KEY", Event = "PRESS", Parameter = "a", Timeout (seconds) = "50", Exact = "0"

6 WAIT FOR Object = "KEY", Event = "RELEASE", Parameter = "a", Timeout (seconds) = "50", Exact = "0"

7 Keyboard UNBLOCK

8

Message CLOSE

Example (Plain Text):

<#> This macro shows how to use 'keys_block' and 'keys_unblock' commands
<cmds>

<msg>(32,32,"Waiting untill ‘a' key is pressed....","Message",0,0,0,0)
<keys_block>

<waitfor>("KEY","PRESS","a",50,0)

<waitfor>("KEY","RELEASE","a",50,0)

<keys_unblock>

<msgoff>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

Key UP - < key_up >() ... [Free]

Keyboard Key UP

<key_up>(Keyboard key,Extended)

Available in: Free edition

The "key_down" and "key_up" commands allows to send a keystroke to currently active window (target application).
Note: For inserting a text it is simpler to use "free text".

Parameter name Parameter description
1 Keyboard key The key to press/release such as A, B, 1, /, etc. For Shift, Ctrl, F1, etc., keys
<shift>, <ctrl>, <F1> syntax needs to be used. In addition, the KC: XXX key code
can be used (Note: The KC: XXX key code is showing in the main window in lower
right area as keys are being hit).
2 Extended If 1, the extended key pressed/released. Otherwise have to be 0.

Example (Macro Steps):

Example (Plain Text):

Macro execution: ONLY COMMANDS

Keyboard Key DOWN Keyboard key=< shift>, Extended=No
Keyboard Key DOWN Keyboard key=A, Extended=No
WAIT wait "1000" ms (time is constant: ")

Keyboard Key UP Keyboard key=A, Extended=No

Keyboard Key UP Keyboard key=< shift>, Extended=No

<#> This command presses down "A" key and releases it one second later

<cmds>
<key_down>(<shift>,0)
<key_down>(A,0)
<wx>(1000)
<key_up>(A,0)
<key_up>(<shift>,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

Key DOWN - < key_down >() ... [Free]

Keyboard Key DOWN

<key_down>(Keyboard key,Extended)

Available in: Free edition

The "key_down" and "key_up" commands allows to send a keystroke to currently active window (target application).
Note: For inserting a text it is simpler to use "free text".

Parameter name Parameter description
1 Keyboard key The key to press/release such as A, B, 1, /, etc. For Shift, Ctrl, F1, etc., keys
<shift>, <ctrl>, <F1> syntax needs to be used. In addition, the KC: XXX key code
can be used (Note: The KC: XXX key code is showing in the main window in lower
right area as keys are being hit).
2 Extended If 1, the extended key pressed/released. Otherwise have to be 0.

Example (Macro Steps):

Example (Plain Text):

Macro execution: ONLY COMMANDS

Keyboard Key DOWN Keyboard key=< shift>, Extended=No
Keyboard Key DOWN Keyboard key=A, Extended=No
WAIT wait "1000" ms (time is constant: ")

Keyboard Key UP Keyboard key=A, Extended=No

Keyboard Key UP Keyboard key=< shift>, Extended=No

<#> This command presses down "A" key and releases it one second later

<cmds>
<key_down>(<shift>,0)
<key_down>(A,0)
<wx>(1000)
<key_up>(A,0)
<key_up>(<shift>,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

ScrollLock ON - < ScrollLock_ON > ... [Pro]

Keyboard ScrollLock ON
<ScrollLock_ON>
Available in: Professional edition

This command turns ScrollLock key ON.
Note: " MsScrollLockON" system variable can be used to determine state of the ScrollLock key.

Example (Macro Steps):

Keyboard ScrollLock ON

Example (Plain Text):

<#>This macro turns ScrollLock key ON
<ScrollLock_ON>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

ScrollLock OFF - < ScrollLock_OFF > ... [Pro]

Keyboard ScrollLock OFF
<ScrollLock_OFF>
Available in: Professional edition

This command turns ScrollLock key OFF.
Note: " MsScrollLockON" system variable can be used to determine state of the ScrollLock key.

Example (Macro Steps):

Keyboard ScrollLock OFF

Example (Plain Text):

<#>This macro turns ScrollLock key OFF
<ScrollLock_OFF>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

CapsLock ON - < CapsLock_ON > ... [Pro]

Keyboard CapsLock ON
<CapsLock_ON>
Available in: Professional edition

This command turns CapsLock key ON.
Note: " MsCapsLockON" system variable can be used to determine state of the CapsLock key.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 IF % JsCapsLockON%==YES

4 Keyboard CapsLock OFF

5 ELSE activate

6 Keyboard CapsLock ON

7

ENDIF

Example (Plain Text):

<#>This macro toggles CapsLock
<cmds>
<if>("%_uisCapsLockON%==YES")
<CapsLock_OFF>
<else>
<CapsLock_ON>
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

CapsLock OFF - < CapsLock_OFF > ... [Pro]

Keyboard CapsLock OFF
<CapsLock_OFF>
Available in: Professional edition

This command turns CapsLock key OFF.
Note: " MsCapsLockON" system variable can be used to determine state of the CapsLock key.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 IF % JsCapsLockON%==YES

4 Keyboard CapsLock OFF

5 ELSE activate

6 Keyboard CapsLock ON

7

ENDIF

Example (Plain Text):

<#>This macro toggles CapsLock
<cmds>
<if>("%_uisCapsLockON%==YES")
<CapsLock_OFF>
<else>
<CapsLock_ON>
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

NumLock ON - < NumLock_ON > ... [Pro]

Keyboard NumLock ON
<NumLock_ON>
Available in: Professional edition

This command turns NumLock key ON.
Note: " vsNumLockON" system variable can be used to determine state of the NumLock key.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 IF % MsNumLockON%==YES

4 Keyboard NumLock OFF

5 ELSE activate

6 Keyboard NumLock ON

7

ENDIF

Example (Plain Text):

<#>This macro toggles NumLock
<cmds>
<if>("%_uvisNumLockON%==YES")
<NumLock_OFF>
<else>
<NumLock_ ON>
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

NumLock OFF - < NumLock_OFF > ... [Pro]

Keyboard NumLock OFF
<NumLock_OFF>
Available in: Professional edition

This command turns NumLock key OFF.
Note: " vsNumLockON" system variable can be used to determine state of the NumLock key.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 IF % MsNumLockON%==YES

4 Keyboard NumLock OFF

5 ELSE activate

6 Keyboard NumLock ON

7

ENDIF

Example (Plain Text):

<#>This macro toggles NumLock
<cmds>
<if>("%_uvisNumLockON%==YES")
<NumLock_OFF>
<else>
<NumLock_ ON>
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keyboard >

SEND KEYSTROKES - < keystrokes >() ... [Pro]

Keyboard SEND KEYSTROKES
<keystrokes>("Keystrokes sequence”,"Delay (ms)","Keystrokes per delay")
Available in: Professional edition

The command sends defined sequence of keystrokes to the currently active window. The command allows to control the
speed of the keystrokes by specifying two additional parameters. If they are set to 5 and 25 then the meaning is "delay
sending of keystrokes for 5 milliseconds after each 25 keystrokes are sent".

Parameter name Parameter description
1 Keystrokes sequence The key to press/release such as a, b, 1, /, etc. For Shift, Ctrl, F1, etc., keys
<shift>, <ctrl>, <F1> syntax needs to be used.
2 Delay (ms) Time in milliseconds to wait after "keystrokes per delay" were executed.
3 Keystrokes per delay Number of keystrokes to send before delay takes place.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOW "[* - Notepad|Notepad|#46[#118]" Is Open (Match=Patrtial)

4 bring "[* - Notepad|Notepad|#46[#118]" window to top (other parameters: Match =
Partial, Window state = Normal, %p4_name =)

5 Keyboard SEND KEYSTROKES "Hello!", Delay (ms)="500"

6 .

ELSE activate

7 Message SHOW " : "'Notepad' is not opened!" (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

8

ENDIF

Example (Plain Text):

<#> This sample slowly types 'Hello! to Notepad (if it is open)
<cmds>

<if_win>("[* - Notepad|Notepad|#46|#118]","OPEN",0)
<actwin>("[* - Notepad|Notepad|#46|#118]",0,0)
<keystrokes>("Hello!","500","5")

<else>
<msg>(100,100,"Notepad' is not opened!","Message",1)

<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Keys

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad4 > ... [Free]

Key
<numpad4>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad5 > ... [Free]

Key
<numpad5>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpadé6 > ... [Free]

Key
<numpad6>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad? > ... [Free]

Key
<numpad7>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad8 > ... [Free]

Key
<numpad8>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad9 > ... [Free]

Key
<numpad9>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad* > ... [Free]

Key
<numpad*>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad+ > ... [Free]

Key
<numpad+>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad- > ... [Free]

Key
<numpad->
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad. > ... [Free]

Key
<numpad.>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad/ > ... [Free]

Key
<numpad/>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F1 > ... [Free]

Key
<F1>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F2 > ... [Free]

Key
<F2>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F3 > ... [Free]

Key
<F3>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F4 > ... [Free]

Key
<F4>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F5 > ... [Free]

Key
<F5>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F6 > ... [Free]

Key
<F6>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F7 > ... [Free]

Key
<F7>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F8 > ... [Free]

Key
<F8>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < clear > ... [Free]

Key
<clear>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F9 > ... [Free]

Key
<F9>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F10 > ... [Free]

Key
<F10>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F11 > ... [Free]

Key
<F11>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F12 > ... [Free]

Key
<F12>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F13 > ... [Free]

Key
<F13>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F14 > ... [Free]

Key
<F14>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F15 > ... [Free]

Key
<F15>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F16 > ... [Free]

Key
<F16>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F17 > ... [Free]

Key
<F17>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F18 > ... [Free]

Key
<F18>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < enter > ... [Free]

Key
<enter>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F19 > ... [Free]

Key
<F19>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F20 > ... [Free]

Key
<F20>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F21 > ... [Free]

Key
<F21>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F22 > ... [Free]

Key
<F22>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F23 > ... [Free]

Key
<F23>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < F24 > ... [Free]

Key
<F24>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>0

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < scroll > ... [Free]

Key
<scroll>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numlock > ... [Free]

Key
<numlock>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < shift > ... [Free]

Key
<shift>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < browser_back > ... [Free]

Key
<browser_back>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < browser_forward > ... [Free]

Key
<browser_forward>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < browser_refresh > ... [Free]

Key
<browser_refresh>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < browser_stop > ... [Free]

Key
<browser_stop>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < ctrl > ... [Free]

Key
<ctrl>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < browser_search > ... [Free]

Key
<browser_search>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < browser_favorites > ... [Free]

Key
<browser_favorites>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < browser_home > ... [Free]

Key
<browser_home>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < volume_mute > ... [Free]

Key
<wlume_mute>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < volume_down > ... [Free]

Key
<wlume_down>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < volume_up > ... [Free]

Key
<wolume_up>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < media_nexttrack > ... [Free]

Key
<media_nexttrack>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < media_prevtrack > ... [Free]

Key
<media_previrack>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < media_stop > ... [Free]

Key
<media_stop>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < media_play_pause > ... [Free]

Key
<media_play_pause>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < alt > ... [Free]

Key
<alt>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < launch_mail > ... [Free]

Key
<launch_mail>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < launch_media_select > ... [Free]

Key
<launch_media_select>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < launch_app1l > ... [Free]

Key
<launch_app1>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < launch_app2 > ... [Free]

Key
<launch_app2>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < break > ... [Free]

Key
<break>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < capslock > ... [Free]

Key
<capslock>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < ctrld > ... [Free]

Key
<ctrld>
Available in: Free edition

This command cause Ctrl key is pressed down.

Example (Macro Steps):

1

2 Key Ctrl Down
3 c

4 Key Ctrl Up

Example (Plain Text):

<#> This example shows how to simulate Ctrl+C key combination
<ctrld>c<ctrlu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < ctrlu > ... [Free]

Key
<ctrlu>
Available in: Free edition

This command cause Ctrl key is released up.

Example (Macro Steps):

1

2 Key Ctrl Down
3 c

4 Key Ctrl Up

Example (Plain Text):

<#> This example shows how to simulate Ctrl+C key combination
<ctrld>c<ctrlu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < altd > ... [Free]

Key
<altd>
Available in: Free edition

This command cause Alt key is pressed down.

Example (Macro Steps):

1

2 Key Alt Down
3 Key F4

4 Key Alt Up

Example (Plain Text):

<#> This example shows how to simulate Alt+F4 key combination
<altd><F4><altu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < altu > ... [Free]

Key
<altu>
Available in: Free edition

This command cause Alt key is released up.

Example (Macro Steps):

1

2 Key Alt Down
3 Key F4

4 Key Alt Up

Example (Plain Text):

<#> This example shows how to simulate Alt+F4 key combination
<altd><F4><altu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < altd_r > ... [Free]

Key
<altd_r>
Available in: Free edition

This command cause right site Alt key is pressed down.

Example (Macro Steps):

1
2 .
Key Alt (right) Down
3 Key F4
4

Key Alt (right) Up

Example (Plain Text):

<#> This example shows how to simulate Alt+F4 key combination
<altd_r><F4><altu_r>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < altu_r > ... [Free]

Key
<altu_r>
Available in: Free edition

This command cause right site Alt key is released up.

Example (Macro Steps):

1
2 .
Key Alt (right) Down
3 Key F4
4

Key Alt (right) Up

Example (Plain Text):

<#> This example shows how to simulate Alt+F4 key combination
<altd_r><F4><altu_r>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < shiftd > ... [Free]

Key
<shiftd>
Available in: Free edition

This command cause Shift key is pressed down.

Example (Macro Steps):

1
2 :
Key Shift Down
3 a
4 :
Key Shift Up

Example (Plain Text):

<#> This example shows how to simulate Shift+a to type capital A
<shiftd>a<shiftu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < shiftu > ... [Free]

Key
<shiftu>
Available in: Free edition

This command cause Shift key is released up.

Example (Macro Steps):

1
2 :
Key Shift Down
3 a
4 :
Key Shift Up

Example (Plain Text):

<#> This example shows how to simulate Shift+a to type capital A
<shiftd>a<shiftu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < winkeyd > ... [Free]

Key
<winkeyd>
Available in: Free edition

This command causes Win key is pressed down.

Example (Macro Steps):

1
2 .
Key Win Down
3 a
4

Key Win (right) Down

Example (Plain Text):

<#> This example shows how to simulate Win key + M to minimize all windows
<winkeyd>a<winkeyu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < winkeyd_r > ... [Free]

Key
<winkeyd_r>
Available in: Free edition

This command causes Win key is released up.

Example (Macro Steps):

1
2 .
Key Win Down
3 a
4

Key Win (right) Down

Example (Plain Text):

<#> This example shows how to simulate Win key + M to minimize all windows
<winkeyd>a<winkeyu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < winkeyu > ... [Free]

Key
<winkeyu>
Available in: Free edition

This command causes right site Win key is pressed down.

Example (Macro Steps):

1

2 .
Key Win Up

3 a

4

Key Win (right) Up

Example (Plain Text):

<#> This example shows how to simulate Win key + M to minimize all windows
<winkeyd_r>a<winkeyu_r>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < winkeyu_r > ... [Free]

Key
<winkeyu_r>
Available in: Free edition

This command causes right site Win key is released up.

Example (Macro Steps):

1

2 .
Key Win Up

3 a

4

Key Win (right) Up

Example (Plain Text):

<#> This example shows how to simulate Win key + M to minimize all windows
<winkeyd_r>a<winkeyu_r>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < esC > ... [Free]

Key
<esc>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < space > ... [Free]

Key
<space>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < pgup > ... [Free]

Key

<pgup>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < pgdn > ... [Free]

Key
<pgdn>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < end > ... [Free]

Key
<end>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < home > ... [Free]

Key
<home>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < left > ... [Free]

Key
<left>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < up > ... [Free]

Key
<up>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < right > ... [Free]

Key
<right>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < down > ... [Free]

Key
<down>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < select > ... [Free]

Key
<select>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < execkey > ... [Free]

Key
<execkey>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < printscreen > ... [Free]

Key
<printscreen>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < insert > ... [Free]

Key
<insert>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < delete > ... [Free]

Key
<delete>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < back > ... [Free]

Key
<back>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < tab > ... [Free]

Key
<tab>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < lwinkey > ... [Free]

Key
<lwinkey>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < rwinkey > ... [Free]

Key
<rwinkey>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < appskey > ... [Free]

Key
<appskey>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpado0 > ... [Free]

Key
<numpad0>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpadl > ... [Free]

Key
<numpadl>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad2 > ... [Free]

Key
<numpad2>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Keys >

- < numpad3 > ... [Free]

Key
<numpad3>
Available in: Free edition

The keystroke is sent to the curently active application (window).
Notice: The control keys - <ctrl>, <alt>, <shift>, <lwinkey>, <rwinkey> - behaves so that the first occurence means

"key down" and the second occurence means "key up". This is different from all other keys where the key means "key up
and down".

Example (Macro Steps):

1

2 Key F10
3

4 Key Cirl
5 Key Alt

6 k

7 Key Alt

8 Key Cirl

Example (Plain Text):

<#> This will press F10 key
<F10><#>This will press Ctri+Alt+K
<ctrl><alt>k<alt><ctrl>

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Macro Engine

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Engine >

Macro CHANGE ICON - < me_changeicon >() ... [Pro]

Macro CHANGE ICON

<me_changeicon>("Macro","Icon file",Icon index)

Available in: Professional edition

This command changes a macro icon.

Parameter name Parameter description
1 Macro Name of the macro. The macro with this name must exist otherwise the
command fails.
2 Icon file Full path to a file containing icon (exe, dll, ico, etc.).
3 Icon index Index of the icon within the IconFilePath.

Example (Macro Steps):

Example (Plain Text):

Macro CHANGE ICON Macro=M1, Icon file=notepad.exe, Icon index=0

<#>This macro changes icon of macro named "M1"
<me_changeicon>("M1","notepad.exe",0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Engine >

Macro execution: ONLY COMMANDS - < cmds > ... [Free]

Macro execution: ONLY COMMANDS
<cmds>
Available in: Free edition

This command changes how the macro is played back. The part of the macro that follows after this command is played
back so that only commands are executed while other macro text (keys) is ignored. This prevents macro from inserting
unwanted keys (for example new lines used just to format macro) during playback. To enable playback of all macro text
(keys) use "keys" command.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Jump TARGET "Ibl_Again"

4 Message SHOW " : "Starting Notepad ..." (other parameters: x = 100, y = 100, Window title = Message,
Buttons = None, Timeout (seconds) =, Always on top =).

5 Run APPLICATION "notepad.exe" (other parameters: Parameters =, Folder path = , Window state = Normal).
Macro execution waits for application to finish up to "0" seconds.

6 WAIT FOR Object = "WIN", Event = "OPEN", Parameter = "[* - Notepad|Notepad[#0|#119]", Timeout
(seconds) = "15", Exact = "0"

7 Message CLOSE

8 Macro execution: KEYS / FREE TEXT + COMMANDS

° Hello, \ \ this macro just demonstrates ‘cmds/keys' commands. \

10 Macro execution: ONLY COMMANDS

1 Variable SET "vAgain=YES/NO", Message text="Do you want to run this macro again ?"

12 P
IF STRING vAgain==YES

13 Jump TO "Ibl_Again”

14

ENDIF

Example (Plain Text):

<#> This macro shows how to use ‘cmds' and 'keys' commands
<cmds>

<label>("Ibl_Again")
<msg>(100,100,"Starting Notepad ...","Message",0)
<execappex>("notepad.exe","","",0,0)

http://www.perfectkeyboard.com

<waitfor>("WIN","OPEN","[* - Notepad|Notepad|#0[#119]",15,0)
<msgoff>

<keys>Hello,

this macro just demonstrates ‘cmds/keys' commands.
<cmds>

<varset>("vAgain=YES/NO","Do you want to run this macro again ?")
<if_str>("vAgain==YES")

<goto>("Ibl_Again")
<endif>

Commands & Syntax > Commands > Macro Engine >

Macro execution: KEYS / FREE TEXT + COMMANDS - < keys > ... [Free]

Macro execution: KEYS / FREE TEXT + COMMANDS

<keys>

Available in: Free edition

This command changes how the macro is played back. The part of the macro that follows after this command is played
back so that whole macro text (keys) are executed. Use this command to enable playback of all macro text (keys) if
"cmds" command was previously used.

Example (Macro Steps):

10

11

12

13

14

Macro execution: ONLY COMMANDS
Jump TARGET "Ibl_Again"

Message SHOW " : "Starting Notepad ..." (other parameters: x = 100, y = 100, Window title = Message,
Buttons = None, Timeout (seconds) =, Always on top =).

Run APPLICATION "notepad.exe" (other parameters: Parameters =, Folder path = , Window state = Normal).
Macro execution waits for application to finish up to "0" seconds.

WAIT FOR Object = "WIN", Event = "OPEN", Parameter = "[* - Notepad|Notepad[#0|#119]", Timeout
(seconds) = "15", Exact = "0"

Message CLOSE
Macro execution: KEYS / FREE TEXT + COMMANDS
Hello, \ \ this macro just demonstrates ‘cmds/keys' commands. \
Macro execution: ONLY COMMANDS
Variable SET "vAgain=YES/NO", Message text="Do you want to run this macro again ?"
IF STRING vAgain==YES
Jump TO "Ibl_Again”

ENDIF

Example (Plain Text):

<#> This macro shows how to use ‘cmds' and 'keys' commands

<cmds>

<label>("Ibl_Again")

<msg>(100,100,"Starting Notepad ...","Message",0)
<execappex>("notepad.exe","","",0,0)
<waitfor>("WIN","OPEN","[* - Notepad|Notepad|#0|#119]",15,0)

http://www.perfectkeyboard.com

<msgoff>
<keys>Hello,

this macro just demonstrates ‘cmds/keys' commands.
<cmds>

<varset>("vAgain=YES/NO","Do you want to run this macro again ?")
<if_str>("vAgain==YES")

<goto>("Ibl_Again")
<endif>

Commands & Syntax > Commands > Macro Engine >

Macro ENABLE/DISABLE - < me_macroenable >() ... [Pro]

Macro ENABLE/DISABLE

<me_macroenable>("Macro",Option,Unused)

Available in: Professional edition

Enables or disables macro.

Parameter name Parameter description
1 Macro Name of the macro to enable/disable. The macro with this name must exist
otherwise the command fails.
2 Option 0 - disable
1 - enable
3 Unused Must be 0.

Example (Macro Steps):

Example (Plain Text):

Macro execution: ONLY COMMANDS

Macro ENABLE/DISABLE "TestMacrol", Option="Disable"

<#> This macro will disable TestMacrol' (if it exist)

<#>
<cmds>
<me_macroenable>("TestMacrol",0,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Engine >

Macro group ENABLE/DISABLE - < me_macroenable_group >() ... [Pro]

Macro group ENABLE/DISABLE
<me_macroenable_group>("Macro group”,Option,Unused)
Available in: Professional edition

Enables or disables specified macro group.

Parameter name Parameter description
1 Macro group Name of the macro group to enable/disable. The macro group with this name
must exist otherwise the command fails.
2 Option 0 - disable
1 - enable
3 Unused Must be 0.

Example (Macro Steps):

Macro execution: ONLY COMMANDS
Macro group ENABLE/DISABLE "GRP1", Option="Disable"

Example (Plain Text):

<#> This macro will disable all macros from 'GRP1' group (if exists)
<#>

<cmds>

<me_macroenable_group>("GRP1",0,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Engine >

Macro program EXIT - < me_exit >() ... [Pro]

Macro program EXIT
<me_exit>(Option)
Available in: Professional edition

This command exits/restarts this program.

Parameter name Parameter description
1 Option 0 - exit this program
1 - restart the program

Example (Macro Steps):

2 Macro execution: ONLY COMMANDS
Macro program EXIT Option=Restart

Example (Plain Text):

<#> This macro will restart program
<#>

<cmds>

<me_exit>(1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Engine >

Macro execution: DISABLE "Shift+Esc" hotkey. - < me_stop_disable > ...
[Pro]

Macro execution: DISABLE "Shift+Esc" hotkey.
<me_stop_disable>
Available in: Professional edition

Macro execution can be (by default) stopped using "Shift+Esc" hotkey. This command disables this option. After this
command is processed, pressing "Shift+Esc" will have no effect. The "me_stop_enable" command enables "Shift+Esc"
again.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Macro execution: DISABLE "Shift+Esc" hotkey.

4

5

6 Message SHOW " : "You cannot stop macro execution using "Shift+Esc" hotkey now. Wait for 5 seconds,
please..." (other parameters: x = -100, y = -100, Window title = Message, Buttons = None, Timeout (seconds)
=, Always on top =).

7 WAIT wait "5000" ms (time is constant: "")

8 Message CLOSE

9 Macro execution: ENABLE "Shift+Esc" hotkey.

10

1 Message SHOW " : "Now you can stop macro execution using "Shift+Esc" hotkey." (other parameters: x =
-100, y = -100, Window title = Message, Buttons = None, Timeout (seconds) =, Always on top =).

12 WAIT wait "5000" ms (time is constant: ")

13

Message CLOSE

Example (Plain Text):

<#> This macro shows how to enable/disable "Shift+Esc"

<#>

<cmds>

<me_stop_disable>

<#> Part of the macro that cannot be interrupted for integrity reasons comes here

<#> We will supply it by 5 seconds wait command in this example

<msg>(-100,-100,"You cannot stop macro execution using %_vQuoteChar%Shift+Esc%_vQuoteChar% hotkey now.
Wait for 5 seconds, please...","Message",0)

http://www.perfectkeyboard.com

<wx>(5000)

<msgoff>

<me_stop_enable>

<#> The rest of the macro can be interrupted using "Shift+Esc"

<msg>(-100,-100,"Now you can stop macro execution using %_vQuoteChar% Shift+Esc%_vQuoteChar%
hotkey.","Message",0)

<wx>(5000)

<msgoff>

Commands & Syntax > Commands > Macro Engine >

Macro execution: ENABLE "Shift+Esc" hotkey. - < me_stop_enable > ...
[Pro]

Macro execution: ENABLE "Shift+Esc" hotkey.
<me_stop_enable>
Available in: Professional edition

This command enables stopping of macro execution by "Shift+Esc" hotkey. This command is typically used after disables
this option. After this command is processed, pressing "Shift+Esc" will have no effect. The "me_stop_enable" command
enables "Shift+Esc" again.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Macro execution: DISABLE "Shift+Esc" hotkey.

4

5

6 Message SHOW " : "You cannot stop macro execution using "Shift+Esc" hotkey now. Wait for 5 seconds,
please..." (other parameters: x = -100, y = -100, Window title = Message, Buttons = None, Timeout (seconds)
=, Always on top =).

7 WAIT wait "5000" ms (time is constant: "")

8 Message CLOSE

9 Macro execution: ENABLE "Shift+Esc" hotkey.

10

1 Message SHOW " : "Now you can stop macro execution using "Shift+Esc" hotkey." (other parameters: x =
-100, y = -100, Window title = Message, Buttons = None, Timeout (seconds) =, Always on top =).

12 WAIT wait "5000" ms (time is constant: ")

13

Message CLOSE

Example (Plain Text):

<#> This macro shows how to enable/disable "Shift+Esc"

<#>

<cmds>

<me_stop_disable>

<#> Part of the macro that cannot be interrupted for integrity reasons comes here

<#> We will supply it by 5 seconds wait command in this example

<msg>(-100,-100,"You cannot stop macro execution using %_vQuoteChar%Shift+Esc%_vQuoteChar% hotkey now.
Wait for 5 seconds, please...","Message",0)

http://www.perfectkeyboard.com

<wx>(5000)

<msgoff>

<me_stop_enable>

<#> The rest of the macro can be interrupted using "Shift+Esc"

<msg>(-100,-100,"Now you can stop macro execution using %_vQuoteChar% Shift+Esc%_vQuoteChar%
hotkey.","Message",0)

<wx>(5000)

<msgoff>

Commands & Syntax > Commands > Macro Engine >

Macro execution STATUS WINDOW - < me_status_window >() ... [Pro]

Macro execution STATUS WINDOW

<me_status_window>("Window title",Operation,Not always on top,x,y,Width,Height)

Available in: Professional edition

This command allows to show/close a window that displays macro execution status. There can be only one status window
shown at the same time. The window can contain multiple rows containing icon (none, "in progress", "OK" "Failed") and
status text. The "me_status_set" command allows to add/modify content of the status window - it either adds new row or

modifies existing row.

Parameter name Parameter description
1 Window title Title of the status window.
2 Operation 0 - the status window is to be opened
1 - the status window is to be closed
3 Not always on top 0 - normal window that can be overlapped by other windows
1 - always on top window that is never overlapped by other windows
4 X X - position of the window on the screen (absolute screen coordinates).
5 y Y - position of the window on the screen (absolute screen coordinates).
6 Width Width of the window.
7 Height Height of the window.

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS

3 Macro execution STATUS WINDOW "Macro in progres" (Operation = OPEN, x =
EXPR(%_vMonitorWorkAreaX 1%+%_vMonitorWorkAreaCX 1%-350), y =
EXPR(%_vMonitorWorkAreaY_1%+%_vMonitorWorkAreaCY_1%-150), Width = 350, Height = 150)

4 Macro execution: STATUS UPDATE ltem identifier=0, ltem name=Three steps needs to be done, please
wait:, Status icon=None

5 Macro execution: STATUS UPDATE ltem identifier=1, Item name=Step 1, Status icon=In progress

6 WAIT wait "2000" ms (time is constant: ")

7 Macro execution: STATUS UPDATE ltem identifier=1, Item name=Step 1: OK, Status icon=0OK

8 Macro execution: STATUS UPDATE ltem identifier=2, ltem name=Step 2, Status icon=In progress

° WAIT wait "2000" ms (time is constant: "")

10 Macro execution: STATUS UPDATE ltem identifier=2, ltem name=Step 2: Failed, Status icon=Failure

1 Macro execution: STATUS UPDATE ltem identifier=3, Item name=Step 3, Status icon=In progress

12 WAIT wait "2000" ms (time is constant: ")

13 Macro execution: STATUS UPDATE ltem identifier=3, Item name=Step 3: OK, Status icon=0OK

14

WAIT wait "2000" ms (time is constant: "")

Example (Plain Text):

<#> This sample shows how to us the status window
<cmds>

<me_status_window>("Macro in

progres",0,1,EXPR(%_vMonitorWorkAreaX 1%+% _vMonitorWorkAreaCX 1%-350),EXPR(%_vMonitorWorkAreaY_1%+%_v
MonitorWorkAreaCY _1%-150),350,150)

<me_status_set>(0,"Three steps needs to be done, please wait:",0)

<me_status_set>(1,"Step 1",1)
<wx>(2000)
<me_status_set>(1,"Step 1: OK",2)

<me_status_set>(2,"Step 2",1)
<wx>(2000)
<me_status_set>(2,"Step 2: Failed",3)

<me_status_set>(3,"Step 3",1)
<wx>(2000)
<me_status_set>(3,"Step 3: OK",2)

<wx>(2000)

Commands & Syntax > Commands > Macro Engine >

Macro execution: STATUS UPDATE - < me_status_set >() ... [Pro]

Macro execution: STATUS UPDATE
<me_status_set>(Item identifier,"ltem name",Status icon)
Available in: Professional edition

This command adds or modifies row in the status window ("me_status_window" command). Each row is identified using
numeric ID. If there is not a row with the given ID in the window yet, then new row is added. If a row with the given ID exists,
then it is updated using parameters passed (status and text - if the text is not supplied then old text remains displayed).
Each row consists of status icon (none, "in progress”, "OK", "Failed") and text.

Parameter name Parameter description
1 Item identifier Unique numeric identifier of the row in the status window.
2 ltem name Text showing on the row.
3 Status icon 0 - none icon
1 - "in progress" icon
2 -"0OK" icon
3 - "Failed" icon
4 - "Info" icon

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Macro execution STATUS WINDOW "Macro in progres" (Operation = OPEN, x = 100, y = 100, Width = 350,
Height = 150)

4 Macro execution: STATUS UPDATE ltem identifier=0, Item name=Three steps needs to be done, please
wait:, Status icon=None

5 Macro execution: STATUS UPDATE ltem identifier=1, Item name=Step 1, Status icon=In progress

6 WAIT wait "2000" ms (time is constant: ")

7 Macro execution: STATUS UPDATE ltem identifier=1, Item name=Step 1: OK, Status icon=0K

8 Macro execution: STATUS UPDATE ltem identifier=2, Item name=Step 2, Status icon=In progress

9 WAIT wait "2000" ms (time is constant: "")

10 Macro execution: STATUS UPDATE ltem identifier=2, Item name=Step 2: Failed, Status icon=Failure

1 Macro execution: STATUS UPDATE ltem identifier=3, Item name=Step 3, Status icon=In progress

12 WAIT wait "2000" ms (time is constant: ")

13 Macro execution: STATUS UPDATE ltem identifier=3, Item name=Step 3: OK, Status icon=0K

14

WAIT wait "2000" ms (time is constant: ")

http://www.perfectkeyboard.com

Example (Plain Text):

<#> This sample shows how to us the status window
<cmds>

<me_status_window>("Macro in progres",0,1,100,100,350,150)
<me_status_set>(0,"Three steps needs to be done, please wait:",0)

<me_status_set>(1,"Step 1",1)
<wx>(2000)
<me_status_set>(1,"Step 1: OK",2)

<me_status_set>(2,"Step 2",1)
<wx>(2000)
<me_status_set>(2,"Step 2: Failed",3)

<me_status_set>(3,"Step 3",1)
<wx>(2000)
<me_status_set>(3,"Step 3: OK",2)

<wx>(2000)

Commands & Syntax > Commands > Macro Engine >

Macro execution: Progress/Cancel SHOW - < me_macroprogress_show >
... [Pro]

Macro execution: Progress/Cancel SHOW
<me_macroprogress_show>
Available in: Professional edition

This command shows macro execution progress window with Cancel/Pause button.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Macro execution: Progress/Cancel SHOW
4 WAIT wait "3000" ms (time is constant: ")

5

6 Macro execution: Progress/Cancel HIDE
7 WAIT wait "3000" ms (time is constant: ")

8

9 Macro execution: Progress/Cancel SHOW
10 WAIT wait "3000" ms (time is constant: ")
11

Example (Plain Text):

<#> This macro shows/hides macro progress execution window
<#>

<cmds>

<me_macroprogress_show>

<wx>(3000) <#> Wait 3 seconds

<me_macroprogress_hide>

<wx>(3000) <#> Wait 3 seconds

<me_macroprogress_show>

<wx>(3000) <#> Wait 3 seconds

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Engine >

Macro execution: Progress/Cancel HIDE - < me_macroprogress_hide > ...
[Pro]

Macro execution: Progress/Cancel HIDE
<me_macroprogress_hide>
Available in: Professional edition

This command hides macro execution progress window with Cancel/Pause button.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Macro execution: Progress/Cancel SHOW
4 WAIT wait "3000" ms (time is constant: ")

5

6 Macro execution: Progress/Cancel HIDE
7 WAIT wait "3000" ms (time is constant: ")

8

9 Macro execution: Progress/Cancel SHOW
10 WAIT wait "3000" ms (time is constant: ")
11

Example (Plain Text):

<#> This macro shows/hides macro progress execution window
<#>

<cmds>

<me_macroprogress_show>

<wx>(3000) <#> Wait 3 seconds

<me_macroprogress_hide>

<wx>(3000) <#> Wait 3 seconds

<me_macroprogress_show>

<wx>(3000) <#> Wait 3 seconds

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Engine >

Macro File: Set dirty - < me_setfiledirty >() ... [Pro]

Macro File: Set dirty
<me_setfiledirty>(Option)
Available in: Professional edition

This command sets the macro file internal "changed" flag ON/OFF. If the flag is ON then the program attempts to sawe
macro file (either automatically or asking user).

Parameter name Parameter description

1 Option Can be one of these values:
0 - the macro file is not changed (and will not be saved)
1 - the macro file is changed (and wil be saved)

Example (Macro Steps):

Macro File: Set dirty "No"

Example (Plain Text):

<#>This macro resets the macro file chnage flag
<me_setfiledirty>(0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Macro Flow Control

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

PAUSE - < pause > ... [Pro]

PAUSE
<pause>
Available in: Professional edition

Stops (pauses) macro execution. User needs to keep Ctrl key down for 0.5 seconds to let the macro to continue.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW " : "Start Notepad and then press 'Ctrl' key for 0.5 seconds to continue this macro." (other
parameters: x = 100, y = 100, Window title = Message, Buttons = None, Timeout (seconds) =, Always on top
=)

4 PAUSE pause macro execution until user hits Enter key

5 Message CLOSE

6 bring "notepad" window to top (other parameters: Match = Partial, Window state =
Normal, %p4_name = no)

7 Macro execution: KEYS / FREE TEXT + COMMANDS

8 Dear Mr.

° Message SHOW " : "Insert the customer name and then press 'Ctrl' key for 0.5 seconds to continue this
macro." (other parameters: x = 100, y = 100, Window title = Message, Buttons = None, Timeout (seconds) =,
Always on top =).

10 PAUSE pause macro execution until user hits Enter key

1 Message CLOSE

12

,\\'we are writing you this letter because...

Example (Plain Text):

<#> This macro shows how to use 'pause' command

<#>

<cmds>

<msg>(100,100,"Start Notepad and then press 'Ctrl' key for 0.5 seconds to continue this macro.","Message",0)
<pause>

<msgoff>

<actwin>("notepad",0,0,"no")

<keys>Dear Mr. <msg>(100,100,"Insert the customer name and then press 'Ctrl' key for 0.5 seconds to continue this
macro.","Message",0)<pause><msgoff>,

we are writing you this letter because...

http://www.perfectkeyboard.com

333

Commands & Syntax > Commands > Macro Flow Control >

WAIT - < wx >() ... [Free]

WAIT

<wx>(Time to wait,Wait time is constant (not adjusted to macro speed))

Available in: Free edition

The command postpones macro execution for X milliseconds. The behavior of this command depends on the macro
playback speed that can user specify for each macro in the "ltem Properties" dialog box.

Parameter name

Parameter description

1 Time to wait

Time to wait in milliseconds.

2 Wait time is constant (not adjusted to macro speed)

Wait time is constant (not adjusted to macro speed).

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "vIime=", Message text="How many seconds to wait ?"

4

5 Variable OPERATION "CALC_EXPRESSION" (Variable for result = vTime, Input text/variable =
%VTime%*1000, Parameter 1 = 0, Parameter 2 = , Parameter 3 = 0)

6 WAIT wait "vTime" ms (time is constant: ")

7

Example (Plain Text):

<#> This macro shows how to use 'wx' command

<>

<cmds>

<varset>("vlime=","How many seconds to wait ?")

<#> Calculate time to wait from seconds to milliseconds

<var_oper>(vTime,"%VvTime%*1000",CALC_EXPRESSION,"0","", "0")

<wx>(VTime)
<msg>(100,100,"Specified time is out.","Message",1)

Message SHOW " : "Specified time is out." (other parameters: x = 100, y = 100, Window title = Message,
Buttons = OK, Timeout (seconds) =, Always on top =).

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

Loop BEGIN - < begloop >() ... [Pro]

Loop BEGIN

<begloop>(Repeat)

Available in: Professional edition

Macro loop feature allows to repeat several times a part of macro (macro steps) that are enclosed between "begin loop" and
"end loop" commands.

Parameter name Parameter description

1 Repeat The number of repeats. Can be one of these options:

Repeat > 0 - The Repeat is the actual number of loops to be performed.
Repeat = 0 - The user specifies the number of repeats in the runtime.
Repeat = -1 - The user is asked each loop to continue or stop repeating.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "WNum=", Message text="How many Notepads you want to open ?"

4 Loop BEGIN Repeat = viNum

5 Run APPLICATION "notepad.exe" (other parameters: Parameters =, Folder path =, Window state =
Normal). Macro execution waits for application to finish up to "0" seconds.

6

Loop END

Example (Plain Text):

<#> This example shows how to use loop commands

<#>
<cmds>
<varset>("vNum=","How many Notepads you want to open ?")
<begloop>(WNum)
<execappex>("notepad.exe","","",0,0)

<endloop>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

Loop END - < endloop > ... [Pro]

Loop END
<endloop>
Available in: Professional edition

Begins loop. The loop allows to repeat some part of macro many times. Each commands must be followed by .

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "WNum=", Message text="How many Notepads you want to open ?"

4 Loop BEGIN Repeat = vVNum

5 Run APPLICATION "notepad.exe" (other parameters: Parameters =, Folder path =, Window state =
Normal). Macro execution waits for application to finish up to "0" seconds.

6

Loop END

Example (Plain Text):

<#> This example shows how to use loop commands

<#>
<cmds>
<varset>("vNum=","How many Notepads you want to open ?")
<begloop>(WNum)
<execappex>("notepad.exe","","",0,0)

<endloop>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

IF - < if >() ... [Pro]

IF

<if>("expression")

Available in: Professional edition

The command evaluates the expression and if it is evaluated as "true" then following macro steps (steps between "if' and
"else/endif') are executed. The expression can contain EXPR(...) syntax.

Parameter name Parameter description
1 expression Expression can contain brackets () and these operators are available:
== (is equal)

I= (is not equal)

<= (is smalller or equal)

< (is smaller)

>= (is bigger or equal)

> (is bigger)

~= (contains substring)

_AND__ (the condition is true AND also following condition is true)
OR (the condition is tru OR the following condition is true)

Expression examples:
Varl==Var2
10020) _AND_ (%VText%~=substring)

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "WWum=", Message text="Type a number:"

4 IF 100<(30+%WNUM%)

5 Message SHOW "Information" : "Yes, this is true: 100<30+%wWum%" (other parameters: x = -100, y =
-100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

6 .

ELSE activate

7 Message SHOW "Error" : "No, it is not true: 100<30+%vNum%" (other parameters: x = -100, y = -100,
Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

8

ENDIF

Example (Plain Text):

<#> This example shows how to use "if' command.

<#>

<cmds>

<varset>("vNum=","Type a number:")

<if>("100<(30+%wWNum%)")

<msg>(-100,-100,"Yes, this is true: 100<30+%wWNum%","Message",1,,0)
<else>

http://www.perfectkeyboard.com

<msg>(-100,-100,"No, it is not true: 100<30+%wWum%","Message",1,,2)
<endif>

Commands & Syntax > Commands > Macro Flow Control >

ELSE - < else > ... [Free]

ELSE
<else>
Available in: Free edition

The command begins an optional block of macro steps. The block is executed if the associated "if* command expression is
evaluated as "false". The command can be only use together with one of an "if' command.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "WWum=", Message text="Type a number:"

4 IF 100<(30+%\Num%)

5 Message SHOW "Information" : "Yes, this is true: 100<30+%wWum%" (other parameters: x = -100, y =
-100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

6 .

EL SE activate

7 Message SHOW "Error" : "No, it is not true: 100<30+%VvNum%" (other parameters: x = -100, y = -100,
Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

8

ENDIF

Example (Plain Text):

<#> This example shows how to use "if' command.

<#>

<cmds>

<varset>("vNum=","Type a number:")

<if>("100<(30+%wWNum%)")

<msg>(-100,-100,"Yes, this is true: 100<30+%wWNum%","Message",1,,0)
<else>

<msg>(-100,-100,"No, it is not true: 100<30+%wWum%","Message",1,,2)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

ENDIF - < endif > ... [Free]

ENDIF
<endif>
Available in: Free edition

The command closes conditional block of macro steps. The command can be only use together with one of an "if*
command.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "WWum=", Message text="Type a number:"

4 IF 100<(30+%\Num%)

5 Message SHOW "Information" : "Yes, this is true: 100<30+%wWum%" (other parameters: x = -100, y =
-100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

6 .

EL SE activate

7 Message SHOW "Error" : "No, it is not true: 100<30+%VvNum%" (other parameters: x = -100, y = -100,
Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

8

ENDIF

Example (Plain Text):

<#> This example shows how to use "if' command.

<#>

<cmds>

<varset>("vNum=","Type a number:")

<if>("100<(30+%wWNum%)")

<msg>(-100,-100,"Yes, this is true: 100<30+%wWNum%","Message",1,,0)
<else>

<msg>(-100,-100,"No, it is not true: 100<30+%wWum%","Message",1,,2)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

Send KEYSTROKES as FAST< /font> as possible -
< faston > ... [Pro]

Send KEYSTROKES as FAST as possible
<faston>
Available in: Professional edition

The command changes the speed of keystrokes sending to the highest rate. Macro keystrokes are sent to active
application without any delay.

Example (Macro Steps):

1

2 Run APPLICATION "notepad.exe" (other parameters: Parameters =, Folder path = , Window state = Normal).
Macro execution waits for application to finish up to "0" seconds.

3 WAIT FOR Object = "WIN", Event = "ACT", Parameter = "Notepad", Timeout (seconds) = "10", Exact = "0"

4 Send KEYSTROKES on SLOWEST rate

5 This text is being inserted slower... \

6 Send KEYSTROKES as FAST as possible

7

...and this text is being inserted faster.

Example (Plain Text):

<#> This macro shows how to use ‘faston/fastoff command.

<#>

<execappex>("notepad.exe","","",0,0)<waitfor>("WIN","ACT","Notepad",10,0)<fastoff>This text is being inserted slower...
<faston>...and this text is being inserted faster.

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

Send KEYSTROKES on SLOWEST rate - <
fastoff > ... [Pro]

Send KEYSTROKES on SLOWEST rate
<fastoff>
Available in: Professional edition

The command changes the speed of keystrokes sending to the slowest rate. Macro keystrokes are sent to active
application with a short delay in between them.

Example (Macro Steps):

1

2 Run APPLICATION "notepad.exe" (other parameters: Parameters =, Folder path = , Window state = Normal).
Macro execution waits for application to finish up to "0" seconds.

3 WAIT FOR Object = "WIN", Event = "ACT", Parameter = "Notepad", Timeout (seconds) = "10", Exact = "0"

4 Send KEYSTROKES on SLOWEST rate

5 This text is being inserted slower... \

6 Send KEYSTROKES as FAST as possible

7

...and this text is being inserted faster.

Example (Plain Text):

<#> This macro shows how to use ‘faston/fastoff command.

<#>

<execappex>("notepad.exe","","",0,0)<waitfor>("WIN","ACT","Notepad",10,0)<fastoff>This text is being inserted slower...
<faston>...and this text is being inserted faster.

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

Jump TARGET - < label >() ... [Pro]

Jump TARGET
<label>("Label")
Available in: Professional edition

Specifies the step in the macro where you can jump using "Jump TO" ("goto") command.

Parameter name Parameter description

1 Label Name of label that marks the step to jump to.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 -
Loop BEGIN Repeat = 0

4 IF NUMERIC __oopCounter>5

5 Message SHOW " : "Too many loops, jumping to the end." (other parameters: x = 100, y = 100,

Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

6 Jump TO "END"

7 ENDIF

8 Loop END

9 Message SHOW " : "OK" (other parameters: x = 100, y = 100, Window title = Message, Buttons = OK,
Timeout (seconds) =, Always on top =).

10

Jump TARGET "END"

Example (Plain Text):

<#> This macro shows how to jump to particular step in the macro

<H#>

<cmds>

<begloop>(0)

<if_num>("_vLoopCounter>5")
<msg>(100,100,"Too many loops, jumping to the end.","Message",1)
<goto>("END")

<endif>

<endloop>

<msg>(100,100,"OK","Message",1)
<label>("END")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

Jump TO - < goto >() ... [Pro]

Jump TO
<goto>("Label")
Available in: Professional edition

Jump to a step defined by Jump TARGET ("label”) command in the macro and continue macro execution from this step.

Parameter name Parameter description

1 Label Name of the target step to jump to.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "WNumOfLoops=", Message text="Insert number of loops (less than 25)"

4 IF NUMERIC WNumOfLoops>=25

5 Message SHOW " : "Too many loops, jumping to the end." (other parameters: x = 100, y = 100, Window
title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

6 Jump TO "END"

7 ENDIF

8 Loop BEGIN Repeat = VNumOfLoops

9 Message SHOW " : " viLoopCounter" (other parameters: x = -100, y = -100, Window title = Loop, Buttons
= None, Timeout (seconds) =, Always on top =).

10 WAIT wait "200" ms (time is constant: ")

1 Loop END

12

Jump TARGET "END"

Example (Plain Text):

<#> This macro shows how to jump to defined step in the macro
<H#>
<cmds>
<varset>("NumOfLoops=","Insert number of loops (less than 25)")
<if_num>("vNumOfLoops>=25")
<msg>(100,100,"Too many loops, jumping to the end.","Message",1)
<goto>("END")

<endif>

<begloop>(WumOfLoops)
<msg>(-100,-100,"_wvi.oopCounter","Loop",0)
<wx>(200)

<endloop>

http://www.perfectkeyboard.com

<label>("END")

Commands & Syntax > Commands > Macro Flow Control >

Macro EXIT - < exitmacro > ... [Pro]

Macro EXIT
<exitmacro>
Available in: Professional edition

This command stops macro execution. If the macro is called using "run" command from other macro, also the calling macro
is stopped.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW " : "Do you want to exit macro execution now?" (other parameters: x = -100, y = -100,
Window title = Message, Buttons = Yes and No, Timeout (seconds) =, Always on top =).

4 IF STRING _wWsgButton==YES

5 Macro EXIT

6 ENDIF

7 Message SHOW " : "OK, macro execution continues then..." (other parameters: x = -100, y = -100, Window

title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This macro shows how to use <exitmacro> command

<cmds>

<msg>(-100,-100,"Do you want to exit macro execution now?","Message",2)
<if_str>("_vwMsgButton==YES")

<exitmacro>

<endif>

<msg>(-100,-100,"OK, macro execution continues then...","Message",1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

WAIT FOR - < waitfor >() ... [Free]

WAIT FOR
<waitfor>("Object”,"Event","Parameter”, Timeout (seconds),Exact)
Available in: Free edition

Wait for a special event (window, clipboard, key, mouse) to occur.

http://www.perfectkeyboard.com

Parameter name

Parameter description

Object

Can be one of these:

"WIN" - a window related event is expected

"CLIP" - a clipboard related event is expected

"KEY" - a specific key press is expected

"MOUSE" - a mouse click is expected

"IMAGE_ON_SCREEN_EXACT" - an image on screen will appear/disappear,
image must be exactly the same

"IMAGE_ON_SCREEN_TOLERANT" - an image on screen will appear/disappear,
image does not has to be exactly the same - some lewel of tolerance is allowed
"WEBBROWSER" - Internet Explorer web browser is loading data

"FILE" - a file is created or deleted

"FOLDER" - a folder is created or deleted

Event

These events are supported for particular Object:

"WIN" :

- "OPEN" - wait until the window specified by Param is opened.

- "CLOSE" - wait until the window specified by Param is closed.

- "ACT" - wait until the window specified by Param is activated.

- "NOACT" - wait until the window specified by Param is deactivated.
"CLIP" :

- "EMPTY" - wait until the clipboard is emptied.

- "SET" - wait until some data are put into the clipboard.

"KEY":

- " (key is pressed) - wait until some of the keys specified by Param is pressed.
"MOUSE" :

- " (mouse click) - wait until mouse click specified by Param appears.
"IMAGE_ON_SCREEN_EXACT"

- "APPEAR" - wait until the image appears on screens

- "DISAPPEAR" - wait until the image disappears from screens
"IMAGE_ON_SCREEN_TOLERANT"

- "APPEAR" - wait until the image appears on screens

- "DISAPPEAR" - wait until the image disappears from screens
"WEBBROWSER"

- "LOADING" - wait until the web page is fully loaded

"FILE"

- "CREATE" - wait until the file is created

- "DELETE" - wait until the file is deleted

- "CHANGED" - wait until the file is changed (based on the last write time)
- "CAN_READ" - wait until the file can be open for reading (after it was previously
blocked by some process)

- "CAN_WRITE" - wait until the file can be open for writing (after it was previously
blocked by some process)

"FOLDER"

- "CREATE" - wait until the folder is created

- "DELETE" - wait until the folder is deleted

Parameter

Has this meaning depending on the Object:

"WIN" - window title

"CLIP" - not used

"KEY" - can be one or more keys. For example, if Param is
"abc<F6>KC:27<alt>" the "waitfor" waits until either a or b or c or F6 or ESC or
Alt key is pressed. The KC: XXX is a key code number of a key on keyboard. The
KC:XXXis showing in the main window in lower right area as keys are being hit.
This way the user can know what is key code of each keyboard key.

"MOUSE" - can be one of these:

<mlbu> - left mouse button

<mmbu> - middle mouse button

<mrbu> - right mouse button

"IMAGE_ON_SCREEN_EXACT" - file path to the .bmp file with the image.
"IMAGE_ON_SCREEN_TOLERANT" - file path to the .bmp file with the image.
"WEBBROWSER" - web page URL.

"FILE" - (full) path to the file.

"FOLDER" - (full) path to the file.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW " : "Press 'Ctrl' key to continue this macro." (other parameters: x = 100, y = 100, Window
title = Message, Buttons = None, Timeout (seconds) =, Always on top =).

4 WAIT FOR Object = "KEY", Event = ", Parameter = "", Timeout (seconds) = "5", Exact = "0"

5 Message CLOSE

6 Message SHOW " : "Press left mouse button to continue this macro." (other parameters: x = 100, y = 100,
Window title = Message, Buttons = None, Timeout (seconds) =, Always on top =).

7 WAIT FOR Object = "MOUSE", Event = ", Parameter = "", Timeout (seconds) = "5", Exact = "0"

8 Message CLOSE

9

Message SHOW " : "Macro is finished." (other parameters: x = 100, y = 100, Window title = Message,
Buttons = OK, Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This macro shows how to use ‘waitfor command

<>

<cmds>

<msg>(100,100,"Press 'Ctrl' key to continue this macro.","Message",0)
<waitfor>("KEY","","<ctrl>",5,0)

<msgoff>

<msg>(100,100,"Press left mouse button to continue this macro.","Message",0)
<waitfor>("MOUSE","","<mlbu>",5,0)

<msgoff>

<msg>(100,100,"Macro is finished.","Message",1)

Commands & Syntax > Commands > Macro Flow Control >

IF WINDOW - < if_win >() ... [Free]

IF WINDOW
<if_win>("Window","Condition",Match)
Available in: Free edition

The command evaluates a window specific condition and if it is evaluated as "true" then following macro steps (steps
between "if' and "else/endif’) are executed.

Parameter name Parameter description
1 Window Window identification to check against the condition.
2 Condition Condition can be one from the following:

"OPEN" - the statement is true if window with the WinTitle is opened (exist).
"CLOSE" - the statement is true if window with the WinTitle is not opened (no
more exist).

"ACT" - the statement is true if window with the WinTitle is active (top most,
receives keyboard events).

"NOACT" - the statement is true if window with the WinTitle is not active (not
receives keyboard events).

3 Match If 1, window identification must exactly match the window.
If 0, window identification can just partially match the window.

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 IF WINDOW "notepad" Is Open (Match=Partial)
4 IF WINDOW "Notepad" Is Active (Match=Partial)
5 Message SHOW " : "Notepad is opened and active." (other parameters: x = 100, y = 100, Window title
= Message, Buttons = OK, Timeout (seconds) =, Always on top =).
6 .
ELSE activate
7 Message SHOW " : "Notepad is opened but not active." (other parameters: x = 100, y = 100, Window
title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).
8 ENDIF
9 .
ELSE activate
10 Message SHOW " : "Notepad is not opened.” (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).
11

ENDIF

Example (Plain Text):

<#> This macro shows how to use "if win" command

http://www.perfectkeyboard.com

<>
<cmds>
<if_win>("notepad","OPEN",0)
<if_win>("Notepad","ACT",0)
<msg>(100,100,"Notepad is opened and active.","Message",1)
<else>
<msg>(100,100,"Notepad is opened but not active.","Message",1)
<endif>
<else>
<msg>(100,100,"Notepad is not opened.","Message",1)
<endif>

Commands & Syntax > Commands > Macro Flow Control >

IF FILE - < if_file >() ... [Pro]

IF FILE
<if_file>("File","Condition","Parameter")
Available in: Professional edition

The command evaluates a file specific condition and if it is evaluated as "true" then following macro steps (steps between
"if" and "else/endif') are executed.

Parameter name Parameter description
1 File Full path to the file to check against the condition.
2 Condition Condition can be one from the following:

"EXIST" - the condition is true if the file exist.

"NOTEXIST" - the condition is true if the file does not exist.

"BIGGER" - the condition is true if the file size is bigger than the specified size.
"SMALLER" - the condition is true if the file size is smaller than the specified
size.

"CONTAIN_NOCASE" - the condition is true if the file contains the text specified
in the additional parameter. The text is compared "case insensitive".
"CONTAIN_CASE" - the condition is true if the file contains the text specified in
the additional parameter. The text is compared "case sensitive".
"NOT_CONTAIN_NOCASE" - the condition is true if the file does not contain the
text specified in the additional parameter. The text is compared "case
insensitive".

"NOT_CONTAIN_CASE" - the condition is true if the file does not contain the text
specified in the additional parameter. The text is compared "case sensitive".

3 Parameter Additional parameter:
File size in bytes for BIGGER and SMALLER conditions.
Text to find in the file for CONTAINS and NOT_CONTAINS conditions.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF FILE "somefile.txt" Exist (0)

4 Message SHOW "Information™ : "Somefile.txt surprisingly exist!" (other parameters: x = 100, y = 100,
Window title = Message, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

5 .

ELSE activate

6 Message SHOW "Information™" : "Somefile.txt file does not exist.” (other parameters: x = 100, y = 100,
Window title = Message, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

7

ENDIF

Example (Plain Text):

<#> This macro shows how to use if-file command
<cmds>
<if file>("somefile.txt","EXIST","0")

http://www.perfectkeyboard.com

<msg>(100,100,"Somefile.txt surprisingly exist!","Message",1,0,0,0)
<else>

<msg>(100,100,"Somefile.txt file does not exist.","Message",1,0,0,0)
<endif>

Commands & Syntax > Commands > Macro Flow Control >

IF FOLDER - < if_dir >() ... [Pro]

IF FOLDER
<if_dir>("Folder path","Condition","Unused")
Available in: Professional edition

The command evaluates a folder specific condition and if it is evaluated as "true" then following macro steps (steps between
"if" and "else/endif') are executed.

Parameter name Parameter description
1 Folder path Full path to folder to check against the condition.
2 Condition Condition can be one from the following:

"EXIST" - the condition is true if the directory exist.
"NOTEXIST" - the condition is true if the directory does not exist.

3 Unused Must be empty.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF FOLDER "c:\windows" Exist

4 Message SHOW " : "c:\windows' exist." (other parameters: x = 100, y = 100, Window title = Message,
Buttons = OK, Timeout (seconds) =, Always on top =).

5 .

ELSE activate

6 Message SHOW " : "c:\windows' NOT exist." (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

7

ENDIF

Example (Plain Text):

<#> This macro shows how to use if-dir command
<>
<cmds>
<if_dir>("c:\windows","EXIST","")
<msg>(100,100,"c:\windows' exist.","Message",1)
<else>
<msg>(100,100,"c:\windows' NOT exist.","Message",1)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

IF CLIPBOARD - < if clp >() ... [Pro]

IF CLIPBOARD

<if_clp>("Condition","Unused")

Available in: Professional edition

The command evaluates the clipboard specific condition and if it is evaluated as "true" then following macro steps (steps
between "if' and "else/endif’) are executed.

Parameter name Parameter description

1 Condition Condition can be one from the following:
"EMPTY" - the condition is true if the clipboard is empty.
"SET" - the condition is true if the clipboard contains some data.

2 Unused Must be empty.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF CLIPBOARD "Is Empty"

4 Message SHOW " : "Clipboard is empty." (other parameters: x = 100, y = 100, Window title = Message,
Buttons = OK, Timeout (seconds) =, Always on top =).

5 ELSE activate

6 Variable SET "VEmpty=YES/NO", Message text="Clipboard is not empty. Do you want to empty it now?"

7 IF STRING VEmpty==YES

8

9 ENDIF

10 ENDIF

Example (Plain Text):

<#> This macro shows how to use if-clp command
<H#>
<cmds>
<if clp>("EMPTY","")

<msg>(100,100,"Clipboard is empty.","Message",1)
<else>

<varset>("vEmpty=YES/NO","Clipboard is not empty. Do you want to empty it now?")

<if_str>("vEmpty==YES")

<clpempty>

<endif>

<endif>

http://www.perfectkeyboard.com

357

Commands & Syntax > Commands > Macro Flow Control >

IF NUMERIC - < if_num >() ... [Pro]

IF NUMERIC
<if_num>("expression")
Available in: Professional edition

The command evaluates a numeric expression and if it is evaluated as "true" then following macro steps (steps between "if"
and "else/endif") are executed. The expression can NOT contain EXPR(...) syntax.

Parameter name Parameter description
1 expression Expression can contain brackets () and these operators are available:
== (is equal)

I= (is not equal)

<= (is smalller or equal)

< (is smaller)

>= (is bigger or equal)

> (is bigger)

_AND__ (the condition is true AND also following condition is true)
OR (the condition is tru OR the following condition is true)

Expression examples:
%Varl%==%Var2%
100<%wNum%+10

(%x%>%y%) _OR_ (%x%+10<%y%)

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "WWum=", Message text="Type a number:"

4 IF NUMERIC 100<(30+%VNumo%)

5 Message SHOW "Information" : "Yes, this is true: 100<30+%wWum%" (other parameters: x = -100, y =
-100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

6 .

ELSE activate

7 Message SHOW "Error" : "No, it is not true: 100<30+%vNum%" (other parameters: x = -100, y = -100,
Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

8

ENDIF

Example (Plain Text):

<#> This example shows how to use "if' command.

<#>

<cmds>

<varset>("vNum=","Type a number:")

<if_num>("100<(30+%wWum%)")

<msg>(-100,-100,"Yes, this is true: 100<30+%wWNum%","Message",1,,0)
<else>

http://www.perfectkeyboard.com

<msg>(-100,-100,"No, it is not true: 100<30+%wWum%","Message",1,,2)
<endif>

Commands & Syntax > Commands > Macro Flow Control >

IF STRING - < if_str >() ... [Pro]

IF STRING

<if_str>("expression")

Available in: Professional edition

The command evaluates a numeric expression and if it is evaluated as "true" then following macro steps (steps between "if"

and "else/endif") are executed. All operands in the expression are considered to be strings (unlike "if_num" that consideres
all operands to be numbers).

Parameter name Parameter description

1 expression Expression can contain brackets () and these operators are available:
== (is equal)
I= (is not equal)

~= (contains substring)
_AND__ (the condition is true AND also following condition is true)
OR (the condition is tru OR the following condition is true)

Expression examples:

%Varl%==%Var2%

%str1%<%str2%

%VText%~=substring

(%str1%<%str2%) _ AND_ (%vText%~=substring)

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "v=", Message text="Type 'Hello' here"

4 IF STRING %w6==Hello

5 Message SHOW "Information" : "Yes! You really typed 'Hello." (other parameters: x = -100, y = -100,
Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

6 .

ELSE activate

7 Message SHOW "Error" : "No, you have typed something else...." (other parameters: x = -100, y = -100,
Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

8

ENDIF

Example (Plain Text):

<#> This example shows how to use "if_str" command.
<cmds>

<varset>("v=","Type 'Hello' here")

<if str>("%wWo==Hello")

http://www.perfectkeyboard.com

<msg>(-100,-100,"Yes! You really typed 'Hello.","Message",1,,0)
<else>

<msg>(-100,-100,"No, you hawe typed something else....","Message",1,,2)
<endif>

Commands & Syntax > Commands > Macro Flow Control >

Debug BREAK POINT - < -dbp- > ... [Pro]

Debug BREAK POINT
<-dbp->
Available in: Professional edition

Debugger build in this program allows user to walk through macro step-by-step. It is possible to let run macro in normal
speed until it reaches "-dbp-" debug break point (there can be many of them within macro). The debug break point just
stops macro execution in debugger. When macro is not running in debugging mode then this command has no effect.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW " : "Message 1" (other parameters: x = -100, y = -100, Window title = Message, Buttons =
OK, Timeout (seconds) =, Always on top =).

4 Message SHOW " : "Message 2" (other parameters: x = -100, y = -100, Window title = Message, Buttons =
OK, Timeout (seconds) =, Always on top =).

5 Debug BREAK POINT

6

Message SHOW " : "Message 3" (other parameters: x = -100, y = -100, Window title = Message, Buttons =
OK, Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This macro shows how to use 'debug break point’
<>

<cmds>

<msg>(-100,-100,"Message 1","Message",1)
<msg>(-100,-100,"Message 2","Message",1)

<-dbp->

<msg>(-100,-100,"Message 3","Message",1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

If PROCESS - < if_process >() ... [Pro]

If PROCESS
<if_process>(File,Condition)
Available in: Professional edition

This command checks whether specified process is running or not. If the condition is evaluated as "true" then macro steps
between "if' and "else/endif' are executed.

Parameter name Parameter description
1 File Name of the executable file (example: notepad.exe) or process identification
number (example: 101876).
2 Condition Must be one of these values:
EXIST
NOT_EXST

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4 If PROCESS "notepad.exe" Exist

5 Message SHOW " : "Notepad is running." (other parameters: x = -100, y = -100, Window title = Message,
Buttons = OK, Timeout (seconds) =, Always on top =).

6 .

ELSE activate

7 Message SHOW " : "Notepad is NOT running." (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

8

ENDIF

Example (Plain Text):

<#> This example checks whether Notepad is running
<#>
<cmds>
<if_process>(notepad.exe,EXIST)
<msg>(-100,-100,"Notepad is running.","Message",1)
<else>
<msg>(-100,-100,"Notepad is NOT running.","Message",1)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

Error CLEAR - < me_error_clear > ... [Pro]

Error CLEAR
<me_error_clear>
Available in: Professional edition

Errors that occur are saved in _VErr system variable. This variable can be used to check whether a macro command failed
or not. This command clears the variable.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Error message DISABLED

4

5

6 File INFO : sawe "Size" information of file "c:\notexistingfile.none" to variable "v1"

7 IF STRING \Err I= NO

8 Message SHOW " : "Error! This is custom error message. The automatic error message was disabled by
'me_err_nodisplay’ command.” (other parameters: x = -100, y = -100, Window title = Message, Buttons =
OK, Timeout (seconds) =, Always on top =).

9 ENDIF

10 Error CLEAR

11 ——

IF STRING %_VErn%== NO

12 Message SHOW "Information” : "Error was cleared.” (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

13

ENDIF

Example (Plain Text):

<#> This macro shows how to use 'me_error_nodisplay' and 'me_error_clear'
<cmds>
<me_error_nodisplay>
<#> Try to get file size of non-existing file. Error
<#> occurs but default (automatic) error message is replaced by the user defined one.
<fileinfo>("c:\notexistingfile.none","SIZE","v1")
<if_str>("_vErr = NO")
<msg>(-100,-100,"Error! This is custom error message. The automatic error message was disabled by
'me_err_nodisplay' command.","Message",1)
<endif><#>
<me error clear><#>

http://www.perfectkeyboard.com

<if_str>("%_VEr%== NO")<#>
<msg>(-100,-100,"Error was cleared.","Message",1,0,0,0)<#>
<endif>

Commands & Syntax > Commands > Macro Flow Control >

Error message DISABLED - < me_error_nodisplay > ... [Pro]

Error message DISABLED
<me_error_nodisplay>
Available in: Professional edition

This command causes that if a command during macro execution fails then error message is not shown and macro
execution continues.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Error message DISABLED

4

5

6 File INFO : sawe "Size" information of file "c:\notexistingfile.none" to variable "v1"

7 IF STRING \Err I= NO

8 Message SHOW " : "Error! This is custom error message. The automatic error message was disabled by
'me_err_nodisplay' command.” (other parameters: x = -100, y = -100, Window title = Message, Buttons =
OK, Timeout (seconds) =, Always on top =).

9

ENDIF

Example (Plain Text):

<#> This macro shows how to use 'me_error_nodisplay’
<#>
<cmds>
<me_error_nodisplay>
<#> Try to get file size of non-existing file. Error
<#> occurs but default (automatic) error message is replaced by the user defined one.
<fileinfo>("c:\notexistingfile.none","SIZE","v1")
<if_str>("_vErr = NO")
<msg>(-100,-100,"Error! This is custom error message. The automatic error message was disabled by
'me_err_nodisplay' command.","Message",1)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

Error message ENABLED - < me_error_display > ... [Pro]

Error message ENABLED
<me_error_display>
Available in: Professional edition

This command causes that if a command during macro execution fails then error message is shown and macro execution
is optionaly stopped. This is default behavior

Example (Macro Steps):

Macro execution: ONLY COMMANDS

Error message ENABLED

File INFO : sawe "Size" information of file "c:\notexistingfile.none" to variable "v1"

Example (Plain Text):

<#> This macro shows how to use 'me_error_display'
<#>

<cmds>

<me_error_display>

<#> Try to get file size of non-existing file. Error

<#> occurs and error message is displayed
<fileinfo>("c:\notexistingfile.none","SIZE","v1")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

Macro EXIT (do not exit calling macro) - < exitmacro_soft > ... [Pro]

Macro EXIT (do not exit calling macro)
<exitmacro_soft>
Available in: Professional edition

This command stops macro execution. If the macro is called using "run" command from other macro then the calling macro
is not stopped and continues execution.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW " : "Do you want to exit macro execution now?" (other parameters: x = -100, y = -100,
Window title = Message, Buttons = Yes and No, Timeout (seconds) =, Always on top =).

4 IF STRING _wWsgButton==YES

5 Macro EXIT (do not exit calling macro)

6 ENDIF

7 Message SHOW " : "OK, macro execution continues then..." (other parameters: x = -100, y = -100, Window

title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This macro shows how to use "exitmacro_soft command

<cmds>

<msg>(-100,-100,"Do you want to exit macro execution now?","Message",2)
<if_str>("_vwMsgButton==YES")

<exitmacro_soft>

<endif>

<msg>(-100,-100,"OK, macro execution continues then...","Message",1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

If KEY / MOUSE BUTTON - < if_key >() ... [Pro]

If KEY / MOUSE BUTTON
<if_key>("Identifier","State")
Available in: Professional edition

This command is used to determine whether a keyboard key (mouse button) is pressed or not.

Parameter name Parameter description

1 Identifier a,b,c,d, etc. key or a special key syntax like , , etc or KC: XXX (key code, for
example KC:27). The KC: XXX is a key code number of a key on keyboard. The
KC: XXX is showing in the main window in lower right area as keys are being hit.
This way the user can know what is key code of each keyboard key.

As for the mouse buttons, one of the following identifier can be used:
- left mouse button

- middle mouse button

- right mouse button

2 State Can be either DOWN or UP

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 Message SHOW " : "Press 'F12' key to continue..." (other parameters: x = -100, y = -100, Window title =
Message, Buttons = None, Timeout (seconds) =, Always on top =).
4 Keyboard BLOCK
5 " "
Jump TARGET "loop
6 If KEY / MOUSE BUTTON " is "Down" then execute following steps
7
Macro EXIT
8 ENDIF
9 " "
Jump TO "loop

Example (Plain Text):

<#> If-keys command example

<cmds>

<msg>(-100,-100,"Press 'F12' key to continue...","Message",0)
<keys_block>

<label>("loop")

<if_key>("<F12>","DOWN")

<exitmacro>

<endif>

<goto>("loop")

http://www.perfectkeyboard.com

370

Commands & Syntax > Commands > Macro Flow Control >

Procedure END - < proc_def_end > ... [Pro]

Procedure END
<proc_def_end>
Available in: Professional edition

This command defines the end of procedure.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Procedure BEGIN: AddQuotes with parameters (parStringlnput, &parStringOutput&)

4 Variable SET "parStringOutput="%parStringlnput%"", Message text=""

5
Procedure END

6 Procedure BEGIN: ConvertToUpper with parameters (parStringInput,&parStringOutput&)

7 Variable OPERATION "STR_UPPER" (Variable for result = parStringOutput, Input text/variable =

%parStringlnput%, Parameter 1 = 2, Parameter 2 = , Parameter 3 = 0)

8 Procedure END

° Variable SET "Wy Text=", Message text="Insert text you want to convert to upper case and enclose to
quotes:"

10 __
IF STRING _\Canceled==

11 Macro EXIT

12 ENDIF

13 Procedure CALL: ConwertToUpper with parameters (%ovMy Text%, viMyText)

14 Procedure CALL: AddQuotes with parameters (%ovMyText%, vMyText)

15

Message SHOW "Information" : "%vMyText%" (other parameters: x = -100, y = -100, Window title = Result,
Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Example (Plain Text):

<#> This example shows how to use procedures

<cmds>

<proc_def_begin>(AddQuotes,"parStringlnput”, "&parStringOutput&")
<varset>("parStringOutput=%_vQuoteChar%%parStringlnput%% _vQuoteChar%","")

<proc_def _end>

<proc def begin>(ConvertToUpper,"parStringlnput","&parStringOutput&™)

http://www.perfectkeyboard.com

<var_oper>(parStringOutput,"%parStringlnput%",STR_UPPER,"2","", "0")
<proc_def_end>

<varset>("vMyText=","Insert text you want to convert to upper case and enclose to quotes:")
<if_str>("_vCanceled==1")<#>

<exitmacro><#>

<endif>

<proc_call>(ConvertToUpper,"%vMyText%", "vMyText")
<proc_call>(AddQuotes,"% Wy Text%", "WMyText")

<msg>(-100,-100,"%wWyText%","Result",1,0,0,0)

Commands & Syntax > Commands > Macro Flow Control >

Procedure BEGIN: - < proc_def_begin >() ... [Pro]

Procedure BEGIN:
<proc_def_begin>(Identifier,Parameter)
Available in: Professional edition

This command defines begin of procedure. Procedure is a piece of macro code that can be called using "proc_call"
command within the macro. Procedure can have any number of parameters. Procedures do not return a value but it is
possible to pass results out of the procedure using reference parameters. Reference parameter contains name of the
variable it references to. Enclose a parameter in between "&" characters to tell the procedure that the parameter is a
reference (example: &parRefParam&).

Example: Let's hawe "proc_def begin"(P1, "parParam1","&parRefParam&") and let's have procedure call "proc_call"(P1,
"555", "vResult"). Now, any modification of parRefParam (that is is done within the P1 procedure) is actually done on
VvResult variable since the parRefParam references it.

Procedure parameter should starts with "par" prefix (for example, "parlnputText"). This makes the parameter known
(accessible) only locally within the procedure so that it does not conflict with other macro variables. Procedure local
variables should start with "lpv' (Local Procedure Variable) prefix (for example, "IpvTemporaryVariable") for the same reason.
It is not allowed to define procedure within other procedure (embedded "proc_def begin"). The procedure definition must be
ended by "proc_def end" command.

When getting actual value of the referenced variable, it is necessary to enclose it to % (example: %parRefParam% provides
actual value while just parRefParam provides name of the referenced variable).

Parameter name Parameter description

1 Identifier Unigue name of the procedure. The name is used as a parameter in "proc_call"
command to identify what procedure to call.

2 Parameter Any number of parameters. Each parameter must be enclosed in between "
character and parameters must be delimited by ,

Example: "parlnputText","parTime","&parRefOutput Text&"

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS

3 Procedure BEGIN: AddQuotes with parameters (parStringlnput, &parStringOutput&)

4 Variable SET "parStringOutput="%parStringlnput%"", Message text=""

5
Procedure END

6 Procedure BEGIN: ConvertToUpper with parameters (parStringInput,&parStringOutput&)

7 Variable OPERATION "STR_UPPER" (Variable for result = parStringOutput, Input text/variable =

%parStringlnput%, Parameter 1 = 2, Parameter 2 = , Parameter 3 = 0)

8 Procedure END

° Variable SET "Wy Text=", Message text="Insert text you want to convert to upper case and enclose to
quotes:"

10 __
IF STRING _\Canceled==

11 Macro EXIT

12 ENDIF

13 Procedure CALL: ConwertToUpper with parameters (%ovMy Text%, viMyText)

14 Procedure CALL: AddQuotes with parameters (%ovMyText%, vMyText)

15

Message SHOW "Information" : "%vMyText%" (other parameters: x = -100, y = -100, Window title = Result,
Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Example (Plain Text):

<#> This example shows how to use procedures

<cmds>

<proc_def_begin>(AddQuotes,"parStringlnput”, "&parStringOutput&")
<varset>("parStringOutput=%_vQuoteChar%%parStringlnput%% _vQuoteChar%","")

<proc_def _end>

<proc_def_begin>(ConvertToUpper,"parStringlnput","&parStringOutput&")
<var_oper>(parStringOutput,"%parStringlnput%",STR_UPPER,"2","", "0")
<proc_def_end>

<varset>("vMyText=","Insert text you want to convert to upper case and enclose to quotes:")
<if_str>("_wvCanceled==1")<#>

<exitmacro><#>

<endif>

<proc_call>(ConvertToUpper,"%vMyText%", "vMyText")
<proc_call>(AddQuotes,"% Wy Text%", "WMyText")

<msg>(-100,-100,"%wWyText%","Result",1,0,0,0)

Commands & Syntax > Commands > Macro Flow Control >

Procedure CALL: - < proc_call >() ... [Pro]

Procedure CALL:
<proc_call>(Identifier,Parameter)
Available in: Professional edition

This command executes a procedure defined using "proc_def _begin" ... "proc_def_end" commands. When calling a
procedure, it is always necessary to pass expected parameters (as they are defined in the "proc_def begin" command). If a
parameter is defined as a reference (see "proc_def begin" help section for details) then it is necessary to pass an exisitng
variable name as the parameter.

Parameter name Parameter description

1 Identifier Unigue name of the procedure to call. It is expected that a procedure with this
name is defined using command.

2 Parameter Any number of parameters. Each parameter must be enclosed in between "
character and parameters must be delimited by ,

Example: "%vinputText%","%vTime%","vOutputText"

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS

3 Procedure BEGIN: AddQuotes with parameters (parStringlnput, &parStringOutput&)

4 Variable SET "parStringOutput="%parStringlnput%"", Message text=""

5
Procedure END

6 Procedure BEGIN: ConvertToUpper with parameters (parStringInput,&parStringOutput&)

7 Variable OPERATION "STR_UPPER" (Variable for result = parStringOutput, Input text/variable =

%parStringlnput%, Parameter 1 = 2, Parameter 2 = , Parameter 3 = 0)

8 Procedure END

° Variable SET "Wy Text=", Message text="Insert text you want to convert to upper case and enclose to
quotes:"

10 __
IF STRING _\Canceled==

11 Macro EXIT

12 ENDIF

13 Procedure CALL: ConwertToUpper with parameters (%ovMy Text%, viMyText)

14 Procedure CALL: AddQuotes with parameters (%ovMyText%, vMyText)

15

Message SHOW "Information" : "%vMyText%" (other parameters: x = -100, y = -100, Window title = Result,
Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Example (Plain Text):

<#> This example shows how to use procedures

<cmds>

<proc_def_begin>(AddQuotes,"parStringlnput”, "&parStringOutput&")
<varset>("parStringOutput=%_vQuoteChar%%parStringlnput%% _vQuoteChar%","")

<proc_def _end>

<proc_def_begin>(ConvertToUpper,"parStringlnput","&parStringOutput&")
<var_oper>(parStringOutput,"%parStringlnput%",STR_UPPER,"2","", "0")
<proc_def_end>

<varset>("vMyText=","Insert text you want to convert to upper case and enclose to quotes:")
<if_str>("_wvCanceled==1")<#>

<exitmacro><#>

<endif>

<proc_call>(ConvertToUpper,"%vMyText%", "vMyText")
<proc_call>(AddQuotes,"% Wy Text%", "WMyText")

<msg>(-100,-100,"%wWyText%","Result",1,0,0,0)

Commands & Syntax > Commands > Macro Flow Control >

INCLUDE here macro text from - < -include- >() ... [Pro]

INCLUDE here macro text from
<-include->("ldentifier")
Available in: Professional edition

This command allows a user to include (insert) other macro or (text) file to the macro. Before macro execution is started,
the <-include-> is replaced by content defined in the command (macro or file). This command makes it possible to use
procedures (,) defined in external text (.mcr) files or in other macros.

Parameter name Parameter description

1 Identifier This parameter can be one of these:

macro:Existing macro name (example: "macro:reusableProcedures™)
file:(Full) path to an existing file (example: "file:c:\.....\reusableProcedures.txt"

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 INCLUDE here macro text from "file:c:\MyMacroLibrary\lib.mcr"
4

Procedure CALL: VeryCommonTask with parameters (1,2,3)

Example (Plain Text):

<#> This example shows how to use <-include-> command
<cmds>

<-include->("file:c:\MyMacroLibrary\lib.mcr")
<proc_call>(VeryCommonTask,"1","2","3")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Macro Flow Control >

Procedure EXIT - < proc_exit > ... [Pro]

Procedure EXIT

<proc_exit>
Available in:

Professional edition

This command exits procedure execution.

Example (Macro Steps):

10

11

12

Macro execution: ONLY COMMANDS
Procedure BEGIN: Example with parameters ()
Repeat steps UNTIL "i<1000" (Counter variable initial value = "i=0", Counter loop increment = "1")
IFi> 100

Message SHOW "Information" : "Exiting procedure execution" (other parameters: x = -100, y =
-100, Window title = Result, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Procedure EXIT
ENDIF
Repeat steps END
Procedure END
Procedure CALL: Example with parameters ()

Message SHOW "Information” : "Macro is finished" (other parameters: x = -100, y = -100, Window title =
Result, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Example (Plain Text):

<#> This example shows how to use "proc_exit" command

<cmds>

<proc_def_begin>(Example,)
<for>("i=0","i<1000","1")
<if>("i > 100")
<msg>(-100,-100,"Exiting procedure execution","Result",1,0,0,0)

<proc_exit>
<endif>
<for_end>

<proc_def_end>

<proc_call>(Example,)

<msg>(-100,-100,"Macro is finished","Result",1,0,0,0)

http://www.perfectkeyboard.com

379

Commands & Syntax > Commands > Macro Flow Control >

Repeat steps UNTIL - < for >() ... [Pro]

Repeat steps UNTIL

<for>("Counter variable initial value","Condition","Counter loop increment")

Available in: Professional edition

This command begins loop that allows macro deweloper to repeat part of macro (between "for" and "for_end" commands)
multiple times. Each "for* command must be followed by "for_end" command. Each loop, a condition defined in "for"
command is evaluated and if it is evaluated as "not true" then the "for" loop is ended. It is possible to end the "for" loop also

using "for_break" command.

Parameter name Parameter description
1 Counter variable initial value Counter variable initialization in form "Variable = value". Example: "varCounter
=1"
2 Condition Condition in the same form as in "if_..." command. Example: "%varCounter%
< 100".
3 Counter loop increment The value that defines how to increase the counter value each loop. Example:
npn

Example (Macro Steps):

http://www.perfectkeyboard.com

Repeat steps UNTIL "vY < 5" (Counter variable initial value = "vY=1", Counter loop increment = "1")

Message SHOW "Information” : "Counters [X,y] = [%VX%,%VY %] Press F10' to exit this macro." (other
parameters: x = -100, y = -100, Window title = For Counters, Buttons = None, Timeout (seconds) = 0,

2
3
4 Macro execution: ONLY COMMANDS
5 Repeat steps UNTIL "vX < 5" (Counter variable initial value = "vX=1", Counter loop increment = "1")
6
7
Always on top =).
8 Error message DISABLED
° WAIT FOR Object = "KEY", Event
10 Error CLEAR
1 Error message ENABLED
12 If KEY / MOUSE BUTTON ™ is "Down" then execute following steps
13 Macro EXIT
14 ENDIF
15 Repeat steps END
16

Repeat steps END

Example (Plain Text):

<#> This macro shows how to use "for" loop.

<#> There are two embedded "for" loops.

<#>

<cmds>

<for>("vX=1","vX < 5","1")

<for>("vy=1""w¥ < 5","1")
<msg>(-100,-100,"Counters [x,y] = [%VvX%,%VY %]

Press F10' to exit this macro.","For Counters",0,0,0)

"PRESS", Parameter = ", Timeout (seconds) = "1", Exact = "0"

<me_error_nodisplay> <waitfor>("KEY","PRESS","<F10>",1,0)<me_error_clear><me_error_display>

<if_key>("<F10>","DOWN")
<exitmacro>
<endif>

<for_end>

<for_end>

382

Commands & Syntax > Commands > Macro Flow Control >

Repeat steps END - < for_end > ... [Pro]

Repeat steps END
<for_end>
Available in: Professional edition

This command ends the repeat section. See also "for" command.

Example (Macro Steps):

1

2

3

4 Macro execution: ONLY COMMANDS

5 Repeat steps UNTIL "vX < 5" (Counter variable initial value = "vX=1", Counter loop increment = "1")

6 Repeat steps UNTIL "vY < 5" (Counter variable initial value = "vY=1", Counter loop increment = "1")

7 Message SHOW "Information" : "Counters [X,y] = [%VX%,%VY %] Press 'F10' to exit this macro." (other
parameters: x = -100, y = -100, Window title = For Counters, Buttons = None, Timeout (seconds) = 0,
Always on top =).

8 Error message DISABLED

° WAIT FOR Object = "KEY", Event = "PRESS", Parameter = "", Timeout (seconds) = "1", Exact = "0"

10 Error CLEAR

1 Error message ENABLED

12 If KEY / MOUSE BUTTON ™ is "Down" then execute following steps

13 Macro EXIT

14 ENDIF

15 Repeat steps END

16

Repeat steps END

Example (Plain Text):

<#> This macro shows how to use "for" loop.
<#> There are two embedded "for" loops.
<#>

<cmds>

<for>("vX=1","vX < 5","1")

http://www.perfectkeyboard.com

<f0r>(ll\/Y:lll’ll\/Y < 5ll'lllll)

<msg>(-100,-100,"Counters [X,y] = [%VvX%,%VY %]

Press 'F10' to exit this macro.","For Counters”,0,0,0)

<me_error_nodisplay> <waitfor>("KEY","PRESS","<F10>",1,0)<me_error_clear><me_error_display>
<if_key>("<F10>","DOWN")

<exitmacro>

<endif>

<for_end>

<for_end>

Commands & Syntax > Commands > Macro Flow Control >

Repeat steps BREAK - < for_break > ... [Pro]

Repeat steps BREAK
<for_break>
Available in: Professional edition

This command breaks a "for" loop execution and cause that the macro continues execution after "for_end" command of the
broken "for" loop. See also "for" command.

Example (Macro Steps):

1

2

3

4 Macro execution: ONLY COMMANDS

5 Repeat steps UNTIL "vX < 5" (Counter variable initial value = "vX=1", Counter loop increment = "1")

6 Repeat steps UNTIL "vY < 50" (Counter variable initial value = "v¥=1", Counter loop increment = "1")

7 Message SHOW "Information" : "Counters [X,y] = [%VX%,%VY%] Press 'F10' to break the y-loop."
(other parameters: x = -100, y = -100, Window title = For Counters, Buttons = None, Timeout (seconds)
= 0, Always on top =).

8 Error message DISABLED

° WAIT FOR Object = "KEY", Event = "PRESS", Parameter = "", Timeout (seconds) = "1", Exact = "0"

10 Error CLEAR

11
Error message ENABLED

12 If KEY / MOUSE BUTTON ™ is "Down" then execute following steps

13

Repeat steps BREAK

14 ENDIF

15 Repeat steps END

16

Repeat steps END

Example (Plain Text):

<#> This macro shows how to use "for" loop.
<#> There are two embedded "for" loops.
<#>

<cmds>

http://www.perfectkeyboard.com

<for>("vX=1","vX < 5","1")
<for>("v¥Y=1","v¥ < 50","1")
<msg>(-100,-100,"Counters [X,y] = [%VvX%,%VY %]
Press 'F10' to break the y-loop.","For Counters",0,0,0)
<me_error_nodisplay> <waitfor>("KEY","PRESS","<F10>",1,0)<me_error_clear><me_error_display>
<if_key>("<F10>","DOWN")
<for_break>
<endif>

<for_end>

<for_end>

Commands & Syntax > Commands > Macro Flow Control >

IF WINDOWS SERVICE - < if_winsvc >() ... [Pro]

IF WINDOWS SERVICE

<if_winsvc>("Senice Name","Condition")

Available in: Professional edition

The command evaluates a Windows senice state and if it is evaluated as "true" then following macro steps (steps between
"if" and "else/endif"') are executed.

Parameter name Parameter description
1 Senice Name The Windows senice name
2 Condition Windows senice state:

"Running" - the senice is running

"Not running" - the senice is installed but it is not running.

"Installed” - the senvice is installed, it does not matter if it is running or not.
"Not Installed" - the senice is not installed.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOWS SERVICE "WebClient" is "NOT running" then execute following steps
4 "WebClient", Command="Start"

5

ENDIF

Example (Plain Text):

<#>This macro shows how to use "if winswc" and "winswc" commands

<cmds>

<if_winsvc>("WebClient","IS_NOT_RUNNING")
<winsve>("WebClient","START")

<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Mouse Commands

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

MOVE - < mm >() ... [Free]

Mouse MOVE
<mm>(x,y,Time to move (ms))
Available in: Free edition

Mowves mouse cursor to required position. The position is in absolute screen coordinates by default. There are these three
commands that can precede the command and change the mouse move coordinates meaning: - mouse cursor position is in
absolute screen coordinates - mouse cursor position is relative to currently active window - mouse cursor position is relative
to current mouse cursor position

Parameter name Parameter description
1 X X-coordinate of the new mouse cursor position.
2 y Y-coordinate of the new mouse cursor position.
3 Time to move (ms) Time in milliseconds it is required the mouse mowe takes. Longer time means
slower speed of the mouse. The time is adjusted by the macro playback speed
settings.

Example (Macro Steps):

1

2

3

4 Macro execution: ONLY COMMANDS

5 Mouse MOVE position [x=100, y=100]

6 WAIT wait "2000" ms (time is constant: ")

7 Mouse COORDINATES are now RELATIVE to current MOUSE position
8

Mouse MOVE position [x=-10, y=-10]

Example (Plain Text):

<#> This macro moves the mouse cursor to position (100,100)
<#> and than - after 2 seconds - to position (-10, -10) relative to
<#> position (100, 100)

<cmds>

<mm>(100,100)
<wx>(2000)

<mousemove_relative_pos>
<mm>(-10,-10)

http://www.perfectkeyboard.com

390

Commands & Syntax > Commands > Mouse Commands >

BUTTON: - < mlbd > ... [Free]

Mouse BUTTON:
<mlbd>
Available in: Free edition

Has the same effect as pressing left mouse button down.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 Mouse MOVE position [x=100, y=100]
4 Mouse BUTTON: LEFT button DOWN
5

Mouse BUTTON: LEFT button UP

Example (Plain Text):

<#> This macro 'clicks' on position (100,100)
<cmds>

<mm>(100,100)
<mlbd>
<mlbu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

BUTTON: - < mlbu > ... [Free]

Mouse BUTTON:
<mlbu>
Available in: Free edition

Has the same effect as releasing left mouse button (after it was pressed down).

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 Mouse MOVE position [x=100, y=100]
4 Mouse BUTTON: LEFT button DOWN
5

Mouse BUTTON: LEFT button UP

Example (Plain Text):

<#> This macro 'clicks' on position (100,100)
<cmds>

<mm>(100,100)
<mlbd>
<mlbu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

BUTTON: - < mrbd > ... [Free]

Mouse BUTTON:
<mrbd>
Available in: Free edition

Has the same effect as pressing right mouse button down.

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 Mouse MOVE position [x=100, y=100]
4 Mouse BUTTON: RIGHT button DOWN
5

Mouse BUTTON: RIGHT button UP

Example (Plain Text):

<#> This macro 'right-clicks' on position (100,100)
<cmds>

<mm>(100,100)
<mrbd>
<mrbu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

BUTTON: - < mrbu > ... [Free]

Mouse BUTTON:
<mrbu>
Available in: Free edition

Has the same effect as releasing right mouse button (after it was pressed down).

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 Mouse MOVE position [x=100, y=100]
4 Mouse BUTTON: RIGHT button DOWN
5

Mouse BUTTON: RIGHT button UP

Example (Plain Text):

<#> This macro 'right-clicks' on position (100,100)
<cmds>

<mm>(100,100)
<mrbd>
<mrbu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

BUTTON: - < mmbd > ... [Free]

Mouse BUTTON:
<mmbd>
Available in: Free edition

Has the same effect as pressing middle mouse button down.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 Mouse MOVE position [x=100, y=100]
4 Mouse BUTTON: MIDDLE button DOWN
5

Mouse BUTTON: MIDDLE button UP

Example (Plain Text):

<#> This macro 'middle-clicks' on position (100,100)
<cmds>

<mm>(100,100)
<mmbd>
<mmbu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

BUTTON: - < mmbu > ... [Free]

Mouse BUTTON:
<mmbu>
Available in: Free edition

Has the same effect as releasing middle mouse button (after it was pressed down).

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 Mouse MOVE position [x=100, y=100]
4 Mouse BUTTON: MIDDLE button DOWN
5

Mouse BUTTON: MIDDLE button UP

Example (Plain Text):

<#> This macro 'middle-clicks' on position (100,100)
<cmds>

<mm>(100,100)
<mmbd>
<mmbu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

COORDINATES - < mousemove_relative_win > ... [Free]

Mouse COORDINATES
<mousemove_relative_win>
Available in: Free edition

This command changes "mouse mowe" command behavior so that "mouse mowe" coordinates are relative to the upper-left
corner of the active window.

Example (Macro Steps):

Mouse COORDINATES are now RELATIVE to active WINDOW
Mouse MOVE position [x=0, y=0]

Example (Plain Text):

<#>This macro mowes cursor to upper left corner of the active window
<mousemowve_relative_win><mm>(0,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

COORDINATES - < mousemove_absolute > ... [Free]

Mouse COORDINATES
<mousemove_absolute>
Available in: Free edition

Changes "mouse mowe" command behavior so that "mouse mowe" coordinates are in computer screen absolute coordinates
(default behavior).

Example (Macro Steps):

Mouse COORDINATES are now ABSOLUTE
Mouse MOVE position [x=100, y=100]

Example (Plain Text):

<#>This macro mowves cursor to position [100,100]
<mousemove_absolute><mm>(100,100)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

COORDINATES - < mousemove_relative_pos > ... [Free]

Mouse COORDINATES
<mousemove_relative_pos>
Available in: Free edition

Changes "mouse mowe" command behavior so that "mouse mowe" coordinates are relative to current mouse position.

Example (Macro Steps):

1

2

3

4 Macro execution: ONLY COMMANDS

5 Mouse MOVE position [x=100, y=100]

6 WAIT wait "2000" ms (time is constant: ")

7 Mouse COORDINATES are now RELATIVE to current MOUSE position
8

Mouse MOVE position [x=-10, y=-10]

Example (Plain Text):

<#> This macro moves the mouse cursor to position (100,100)
<#> and than - after 2 seconds - to position (-10, -10) relative to
<#> position (100, 100)

<cmds>

<mm>(100,100)

<wx>(2000)

<mousemove_relative_pos>

<mm>(-10,-10)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

COORDINATES - < mousemove_relative_definedwindow >() ... [Free]

Mouse COORDINATES
<mousemove_relative_definedwindow>("Window",Match)
Available in: Free edition

This command changes "mouse mowe" command behavior so that "mouse mowe" coordinates are relative to upper-left
corner of the selected window.

Parameter name Parameter description
1 Window Window identifier in form of Window Identification Path (WIP) or HWND. It
identifies the window that is to be closed.
2 Match Takes effect only if a window is identified using WIP parameter. Can be one of
these values:

0 - match substrings in WIP
1 - match exact strings in WIP

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOW "[* - Notepad|Notepad|#0[#114]" Is Open (Match=Partial)

4 Mouse COORDINATES are now RELATIVE to WINDOW "[* - Notepad|Notepad|#0[#114]" (Match = Partial)
5 Mouse MOVE position [x=10, y=10]

6

ENDIF

Example (Plain Text):

<#>This example moves mouse cursor to upper-left corner of Notepad window

<cmds>

<if_win>("[* - Notepad|Notepad|#0}#114]","OPEN",0)
<mousemove_relative_definedwindow>("[* - Notepad|Notepad|#0[#114]",0)
<mm>(10,10)

<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

BUTTON: - < mx1bd > ... [Free]

Mouse BUTTON:
<mx1lbd>
Available in: Free edition

Has the same effect as pressing "X1" mouse button down.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 Mouse MOVE position [x=100, y=100]
4 Mouse BUTTON: X1 button DOWN

5

Mouse BUTTON: X1 button UP

Example (Plain Text):

<#> This macro does X1 click on position (100,100)
<cmds>

<mm>(100,100)
<mx1bd>
<mx1bu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

BUTTON: - < mx1bu > ... [Free]

Mouse BUTTON:
<mx1lbu>
Available in: Free edition

Has the same effect as releasing "X1" mouse button (after it was pressed down).

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 Mouse MOVE position [x=100, y=100]
4 Mouse BUTTON: X1 button DOWN

5

Mouse BUTTON: X1 button UP

Example (Plain Text):

<#> This macro does X1 click on position (100,100)
<cmds>

<mm>(100,100)
<mx1bd>
<mx1bu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

BUTTON: - < mx2bd > ... [Free]

Mouse BUTTON:
<mx2bd>
Available in: Free edition

Has the same effect as pressing "X2" mouse button down.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 Mouse MOVE position [x=100, y=100]
4 Mouse BUTTON: X2 button DOWN

5

Mouse BUTTON: X2 button UP

Example (Plain Text):

<#> This macro does X2 click on position (100,100)
<cmds>

<mm>(100,100)
<mx2bd>
<mx2bu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

BUTTON: - < mx2bu > ... [Free]

Mouse BUTTON:
<mx2bu>
Available in: Free edition

Has the same effect as releasing "X2" mouse button (after it was pressed down).

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS
3 Mouse MOVE position [x=100, y=100]
4 Mouse BUTTON: X2 button DOWN

5

Mouse BUTTON: X2 button UP

Example (Plain Text):

<#> This macro does X2 click on position (100,100)
<cmds>

<mm>(100,100)
<mx2bd>
<mx2bu>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

BLOCK - < mouse_block > ... [Pro]

Mouse BLOCK
<mouse_block>
Available in: Professional edition

This command blocks mouse events. It can be used when it is necessary to disable mouse events during macro execution,
for example, before "wait for mouse” command ("waitfor"). If it is required to disable keyboard and mouse input during whole
macro execution then it is also possible to use "Lock keyboard and mouse while macro is running" option in the macro
settings tab. To unblock mouse, use "mouse_unblock” command.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW "Information" : "Waiting untill right-click" (other parameters: x = 32, y = 32, Window title =
Message, Buttons = None, Timeout (seconds) = 0, Always on top = No).

4
Mouse BLOCK

5 WAIT FOR Object = "MOUSE", Event = "PRESS", Parameter = "", Timeout (seconds) = "10", Exact = "0"

6 Mouse UNBLOCK

7

Message CLOSE

Example (Plain Text):

<#> This macro shows how to use 'mouse_block' and 'mouse_unblock' commands
<cmds>
<msg>(32,32,"Waiting untill right-click","Message",0,0,0,0)

<mouse_block>
<waitfor>("MOUSE","PRESS","<mrbd>",10,0)

<mouse_unblock>
<msgoff>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

UNBLOCK - < mouse_unblock > ... [Pro]

Mouse UNBLOCK
<mouse_unblock>
Available in: Professional edition

This command unblocks mouse events blocked by previous use of "mouse_block" command.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW "Information” : "Waiting untill right-click" (other parameters: x = 32, y = 32, Window title =
Message, Buttons = None, Timeout (seconds) = 0, Always on top = No).

4
Mouse BLOCK

5 WAIT FOR Object = "MOUSE", Event = "PRESS", Parameter = "", Timeout (seconds) = "10", Exact = "0"

6 Mouse UNBLOCK

7

Message CLOSE

Example (Plain Text):

<#> This macro shows how to use 'mouse_block' and 'mouse_unblock' commands
<cmds>
<msg>(32,32,"Waiting untill right-click","Message",0,0,0,0)

<mouse_block>
<waitfor>("MOUSE","PRESS","<mrbd>",10,0)

<mouse_unblock>
<msgoff>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

WHEEL FORWARD - < mwheel_f > ... [Free]

Mouse WHEEL FORWARD
<mwheel_f>
Available in: Free edition

This command has the same effect as rotating mouse wheel forward.

Example (Macro Steps):

Mouse WHEEL FORWARD

Example (Plain Text):

<#> This macro scrolls a little bit using mouse wheel
<mwheel_f>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

WHEEL BACKWARD - < mwheel_b > ... [Free]

Mouse WHEEL BACKWARD
<mwheel_b>
Available in: Free edition

This command has the same effect as rotating mouse wheel backward.

Example (Macro Steps):

Mouse WHEEL BACKWARD

Example (Plain Text):

<#> This macro scrolls a little bit using mouse wheel
<mwheel_b>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Mouse Commands >

DOUBLE-CLICK - < m2click > ... [Free]

Mouse DOUBLE-CLICK
<mZ2click>
Available in: Free edition

This command has the same effect as left mouse button double-click.

Example (Macro Steps):

Mouse MOVE position [x=100, y=100]
Mouse DOUBLE-CLICK

Example (Plain Text):

<#> This macro 'double-clicks' on position (100,100)
<mm>(100,100)<m2click>

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Networking/Web/E-mail

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Networking/Web/E-mail >

Web OPEN PAGE - < wwwopen >() ... [Pro]

<wwwopen>("URL",Window state, Time to wait,Window handle,Browser)
Available in: Professional edition

Opens web page in a web browser.
Note: In order to use this command together with "www_fillform" command the "Internet Explorer" browser must be used.

Parameter name Parameter description

1 URL Link (URL) to the web page (e.g., "http://www.macrotoolworks.com"). The link
must contain http://, https://, etc. prefix.

2 Window state The state of the window:
0 - Normal
1 - Maximized
2 - Minimized

3 Time to wait Time in seconds. If the web page is not opened in this time frame then the

command fails.

4 Window handle The value of this field can be one of these:

e Variable name - variable containing handle identifying web browser
window to use. If the variable value is "empty" then a new web browser
window is opened. The variable receives handle of this new browser
window.

e 0 or Empty - if the field is empty or contains O then an already opened
window is used.

e 1 -ifthe field contains 1 then a new Internet Explorer window is open.

e 2 -ifthe field contains 2 then a new Internet Explorer tab is open.

5 Browser Browser to use:

IE - Internet Explorer

Default - The browser that is set as default is used. In this case the previous
"Time to wait" parameter and "Window handle" parameters are ignored.

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 URL = http://wwww.pitrinec.com, Window state = Normal, Time to wait = 15, Window handle

=, Browser = Internet Explorer

Example (Plain Text):

<#> This command opens pitrinec.com web page
<#>

<cmds>
<wwwopen>("http://wwww.pitrinec.com”,0,15,,IE)

http://www.perfectkeyboard.com

412

Commands & Syntax > Commands > Networking/Web/E-mail >

Net drive CONNECT - < netcondrive >() ... [Pro]

<netcondrive>("Drive letter","Network path”,"Login name","Password","Restore at next logon™)

Available in: Professional edition

Maps (connects) a network folder to local drive.

Parameter name Parameter description

1 Drive letter Drive you want to map the network folder to (e.g., "X"). It must be one letter
followed by : .

2 Network path Network folder (for example, "\\server\mydir").

3 Login name User name to use to gain access rights to the network folder.

4 Password Password to use to gain access rights to the network folder.

5 Restore at next logon Restore at next logon:
0 - the drive is not mapped at next logon
1 - the drive will be automatically mapped at next logon

Example (Macro Steps):

Example (Plain Text):

Macro execution: ONLY COMMANDS

"X" = "\\senernmzdir* (Login name=john, Restore at next logon=No)

<#> This macro maps a network directory to local drive.

<H>
<cmds>

<netcondrive>("X:","\\server\mzdir

","jpwd",0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Networking/Web/E-mail >

Net drive DISCONNECT - < netdiscondrive >() ... [Pro]

<netdiscondrive>("Drive letter",Restore at next logon)
Available in: Professional edition

Disconnects a network folder from a local drive.

Parameter name Parameter description
1 Drive letter Drive you want to remowe (e.g., "X"). It must be one letter followed by : .
2 Restore at next logon Restore at next logon:

0 - the drive will not be automatically mapped at next logon
1 - the drive will be automatically mapped at next logon

Example (Macro Steps):

Macro execution: ONLY COMMANDS
"X", Restore at next logon=" 0"

Example (Plain Text):

<#> This macro disconnects drive from a network folder
<>

<cmds>

<netdiscondrive>("X.", 0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Networking/Web/E-mail >

ftp GET - < ftp_getfile >() ... [Pro]

<ftp_getfile>("File","Remote file","Login name","Password","Silent")

Available in: Professional edition

Downloads file from a remote FTP senser.

Parameter name Parameter description

1 File Full path to the file on local machine. If the file already exists it will be overwritten
without a prior prompt.

2 Remote file Full path to the remote file (e.g., ftp://pitrinec.com/publ/test.txt). The file path can
contain * and ? wildcards. In such a case the "LocalFile" parameter must contain
folder where to store multiple files received.

Login name User login name. If empty the "anonymous" is considered.

4 Password User name login password.

Silent Silent mode. If set to 1 then the operation progress window is not displayed.

Example (Macro Steps):

10

11

12

13

14

Macro execution: ONLY COMMANDS

Message SHOW " : "Where To Save Downloaded File?" (other parameters: x = 32, y = 32, Window title =
Message, Buttons = None, Timeout (seconds) =, Always on top =).

Variable OPERATION "SELECT _FOLDER" (Variable for result = viLocalFolder, Input text/variable =,
Parameter 1 = , Parameter 2 =, Parameter 3 = 0)

IF STRING _vCanceled==

Macro EXIT

ENDIF

Message CLOSE

"ftp://pitrinec.com/pub/test.txt" (Login name=anonymous) to file "%\LocalFolder%\test.txt"

Message SHOW " : "File is downloaded. Do you want to open it?" (other parameters: x = -100, y = -100,
Window title = Message, Buttons = Yes and No, Timeout (seconds) =, Always on top =).

IF STRING _wIsgButton==YES

File OPEN open file "%\localFolder%\test.txt" in system default viewer.

ENDIF

http://www.perfectkeyboard.com

Example (Plain Text):

<#> This macro downloads "test.txt" file from pitrinec.com
<#>
<cmds>

<msg>(32,32,"Where To Save Downloaded File?","Message",0)
<var_oper>(\LocalFolder,"",SELECT_FOLDER,"","", "0")
<if_str>("_vCanceled==1")<#>

<exitmacro><#>

<endif>

<msgoff>

<ftp_getfile>("%wL ocalFolder%\test.txt","ftp://pitrinec.com/pub/test.txt","anonymous","")

<msg>(-100,-100,"File is downloaded. Do you want to open it?","Message",2)
<if_str>("_vwMsgButton==YES")

<fileopen>("%Ww.ocalFolder%\test.txt",0)
<endif>

Commands & Syntax > Commands > Networking/Web/E-mail >

ftp PUT - < ftp_putfile >() ... [Pro]

<ftp_putfile>("File","Remote file","Login name","Password","Silent")
Available in: Professional edition

Uploads file(s) to a remote FTP senver.

Parameter name Parameter description
1 File Path to the file on local machine. The path can contain * and ? wildcards.
2 Remote file Path to the remote file (e.g., ftp://pitrinec.com/pub/about.txt). If the "LocalFile"

field contains wildcards then this field specifies directory where to upload multiple
files (e.g., ftp://pitrinec.com/pub/).

3 Login name User login name. If empty the "anonymous" is considered.
4 Password User name login password.
5 Silent Silent mode. If set to 1 then the operation progress window is not displayed.

Example (Macro Steps):

upload "c:\temp_c*.txt" to Ftp site "ftp://pitrinec.com/anon_ftp/pub/* (Login
name=YOUR_USER_NAME)

Example (Plain Text):

<#> This macro uploads files to pitrinec.com
<#>
<ftp_putfile>("c:\temp_c*.txt","ftp://pitrinec.com/anon_ftp/pub/","YOUR_USER_NAME","YOUR_PASSWORD")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Networking/Web/E-mail >

ftp DELETE - < ftp_delfile >() ... [Pro]

<ftp_delfile>("Unused","Remote file","Login name","Password","Silent")
Available in: Professional edition

Deletes file from a remote FTP sensr.

Parameter name Parameter description
1 Unused Must be empty.
2 Remote file Full path to the remote file (e.g., ftp://softwareutilities.com/about.txt). The path
can contain * and ? wildcards.
Login name User login name. If empty the "anonymous" is considered.
4 Password User name login password.
5 Silent Silent mode. If set to 1 then the operation progress window is not displayed.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Form FIELD "Remote file to delete:" of type "Text edit" (Default value=, Variable to save field
value=vRemoteFile, Form identifier=fim1)

4 Form FIELD "User:" of type "Text edit" (Default value=, Variable to sawe field value=vUser, Form identifier=fm1)

5 Form FIELD "Password:" of type "Text edit" (Default value=, Variable to sawe field value=vPassword, Form
identifier=fm1)

6 Form OPEN "fm1", Window title="FTP: Delete File"

7 IF STRING _vCanceled==

8 Macro EXIT

9 ENDIF

10

"vRemoteFile" (Login name=vUser)

Example (Plain Text):

<#> This macro deletes file from FTP server
<#>
<cmds>

<form_item>("fm1","Remote file to delete:","EDIT","","vRemoteFile")
<form_item>("fm1","User:","EDIT","","Wser")

<form_item>("fm1","Password:","EDIT","","vPassword")

<form_show>("fm1","FTP: Delete File","shell32.dll",32)

http://www.perfectkeyboard.com

<if_str>("_wvCanceled==1")<exitmacro><endif>

<ftp_delfile>("","vRemoteFile","vUser","vPassword")

Commands & Syntax > Commands > Networking/Web/E-mail >

ftp RENAME FILE - < ftp_renamefile >() ... [Pro]

<ftp_renamefile>("Old name","New name","Login name","Password","Silent")

Available in: Professional edition

Renames file on a remote FTP sensr.

Parameter name Parameter description
1 Old name Full path to the original remote file (e.g., ftp://softwareutilities.com/original.txt).
2 New name Full path to the remote new file (e.g., ftp://softwareutilities.com/renamed.txt).
3 Login name User login name. If empty the "anonymous" is considered.
4 Password User name login password.
5 Silent Silent mode. If set to 1 then the operation progress window is not displayed.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Form FIELD "Remote file - old name:" of type "Text edit" (Default value=, Variable to save field
value=vRemoteFileOld, Form identifier=fm1)

4 Form FIELD "Remote file - new name:" of type "Text edit" (Default value=, Variable to save field
value=vRemoteFileNew, Form identifier=fm1)

5 Form FIELD "User:" of type "Text edit" (Default value=, Variable to save field value=vUser, Form identifier=fm1)

6 Form FIELD "Password:" of type "Text edit" (Default value=, Variable to sawe field value=vPassword, Form
identifier=fm1)

7 Form OPEN "fm1", Window title="File Rename"

8 IF STRING _vCanceled==

9

Macro EXIT
10 ENDIF
11

"vRemoteFileOld" to "vRemoteFileNew" (Login hame=vUser)

Example (Plain Text):

<#> This macro uploads file to an FTP server

<H>
<cmds>

<form_item>("fm1","Remote file - old name:","EDIT","","vRemoteFileOld")
<form_item>("fm1","Remote file - new name:","EDIT","","vRemoteFileNew")
<form item>("fm1","User:","EDIT","","WUser")

http://www.perfectkeyboard.com

<form_item>("fm1","Password:","EDIT","","vPassword")

<form_show>("fm1","File Rename","shell32.dIl",1)
<if_str>("_vCanceled==1")<exitmacro><endif>

<ftp_renamefile>("vRemoteFileOld","vRemoteFileNew","WUser","vPassword")

Commands & Syntax > Commands > Networking/Web/E-mail >

ftp CREATE DIRECTORY - < ftp_createdir >() ... [Pro]

<ftp_createdir>("Unused","New name","Login name","Password","Silent")
Available in: Professional edition

Creates new directory on a remote FTP senver.

Parameter name Parameter description
1 Unused Must be empty.
2 New name Full path to the remote directory to create (e.g., ftp://softwareutilities.com/newdir).
3 Login name User login name. If empty the "anonymous" is considered.
4 Password User name login password.
5 Silent Silent mode. If set to 1 then the operation progress window is not displayed.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Form FIELD "Remote directory to create:" of type "Text edit" (Default value=, Variable to sawe field
value=vRemoteDir, Form identifier=fm1)

4 Form FIELD "User:" of type "Text edit" (Default value=, Variable to sawe field value=vUser, Form identifier=fm1)

5 Form FIELD "Password:" of type "Text edit" (Default value=, Variable to sawe field value=vPassword, Form
identifier=fm1)

6 Form OPEN "fm1", Window title="FTP: Create Directory"

7 IF STRING _vCanceled==1

8 Macro EXIT

9 ENDIF

10

"vRemoteDir" (Login name=vUJser)

Example (Plain Text):

<#> This macro creates new directory on FTP server
<H#>
<cmds>

<form_item>("fm1","Remote directory to create:","EDIT","","vRemoteDir")
<form_item>("fm1","User:","EDIT","","Wser")
<form_item>("fm1","Password:","EDIT","","vPassword")

<form_show>("fm1","FTP: Create Directory","shell32.dll",3)
<if str>("_vCanceled==1")<exitmacro><endif>

http://www.perfectkeyboard.com

<ftp_createdir>("","vRemoteDir","Wser","vPassword")

Commands & Syntax > Commands > Networking/Web/E-mail >

ftp DELETE DIRECTORY - < ftp_deldir >() ... [Pro]

<ftp_deldir>("Unused","Delete","Login name","Password","Silent")
Available in: Professional edition

Deletes directory on a remote FTP sener.

Parameter name Parameter description
1 Unused Must be empty.
2 Delete Full path to the remote directory to delete (e.qg., ftp://softwareutilities.com/dir).
3 Login name User login name. If empty the "anonymous" is considered.
4 Password User name login password.
5 Silent Silent mode. If set to 1 then the operation progress window is not displayed.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Form FIELD "Remote directory to delete:" of type "Text edit" (Default value=, Variable to sawe field
value=vRemoteDir, Form identifier=fm1)

4 Form FIELD "User:" of type "Text edit" (Default value=, Variable to sawe field value=vUser, Form identifier=fm1)

5 Form FIELD "Password:" of type "Text edit" (Default value=, Variable to sawe field value=vPassword, Form
identifier=fm1)

6 Form OPEN "fm1", Window title="FTP: Delete Directory"

7 IF STRING _vCanceled==1

8 Macro EXIT

9 ENDIF

10

"vRemoteDir" (Login name=vUser)

Example (Plain Text):

<#> This macro deletes directory on FTP server
<#>
<cmds>

<form_item>("fm1","Remote directory to delete:","EDIT","","vRemoteDir")
<form_item>("fm1","User:","EDIT","","Wser")
<form_item>("fm1","Password:","EDIT","","vPassword")

<form_show>("fm1","FTP: Delete Directory","shell32.dll",31)
<if str>("_vCanceled==1")<exitmacro><endif>

http://www.perfectkeyboard.com

<ftp_deldir>("","vRemoteDir","WUser","vPassword")

Commands & Syntax > Commands > Networking/Web/E-mail >

E-mail SEND - < email_send >() ... [Pro]

<email_send>("Subject","Message text","To","CC","BCC","Attachment")
Available in: Professional edition

This command sends an e-mail without any user's interaction using default e-mail client.

Parameter name Parameter description

1 Subject E-mail subject field.

2 Message text Message text.

3 To E-mail address where to send the e-mail. Example: someone@somewhere.net

4 CcC E-mail address of whom to send CC (carbon copy). Example:
someone@somewhere.net

5 BCC E-mail address of whom to send BCC (blind carbon copy). Example:
someone@somewhere.net

6 Attachment Full path to files that will be sent along with the e-mail message. The files are
delimited by comma.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

Subject=Hello, Message text=Hello, this is just a sample e-mail...,
To=someone@somewhere.net, CC =, BCC =, Attachment = C:\documents\doc1.doc

Example (Plain Text):

<#> This command automatically sends an e-mail message

<#>

<cmds>

<email_send>("Hello","Hello,

this is just a sample e-mail...","someone@somewhere.net","","","C:\documents\doc1.doc")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Networking/Web/E-mail >

Http DOWNLOAD - < download >() ... [Pro]

<download>("File","Remote file","Login name","Password")

Available in: Professional edition

Downloads file from a HTTP server.

Parameter name Parameter description
1 File (Full) path to the file on local machine. If the file already exists it will be
overwritten without a prior prompt.
2 Remote file Full path to the remote file (e.g., http://www.pitrinec.com/index.html).
Login name User login name. If empty the "anonymous" is considered.
4 Password User name login password.

Example (Macro Steps):

10

11

12

13

14

Macro execution: ONLY COMMANDS

Message SHOW " : "Where To Save Downloaded File?" (other parameters: x = 32, y = 32, Window title =
Message, Buttons = None, Timeout (seconds) =, Always on top =).

Variable OPERATION "SELECT _FOLDER" (Variable for result = viLocalFolder, Input text/variable =,
Parameter 1 = , Parameter 2 =, Parameter 3 = 0)

IF STRING _vCanceled==
Macro EXIT
ENDIF
Message CLOSE
"http://www.pitrinec.com/index.html" (Login name=) to file "%\LocalFolder%\index.htm|"

Message SHOW " : "File is downloaded. Do you want to open it?" (other parameters: x = -100, y = -100,
Window title = Message, Buttons = Yes and No, Timeout (seconds) =, Always on top =).

IF STRING _wsgButton==YES
File OPEN open file "%\LocalFolder%\index.html" in system default viewer.

ENDIF

Example (Plain Text):

<#> This sample macro downloads home page file from www.pitrinec.com

http://www.perfectkeyboard.com

<#>
<cmds>

<msg>(32,32,"Where To Save Downloaded File?","Message",0)

<var_oper>(\LocalFolder,"",SELECT_FOLDER,"","", "0")
<if_str>("_vCanceled==1")<exitmacro><endif>

<msgoff>
<download>("%w_ocalFolder¥%\index.html","http://www.pitrinec.com/index.html","","")

<msg>(-100,-100,"File is downloaded. Do you want to open it?","Message"”,2)
<if_str>("_vwMsgButton==YES")

<fileopen>("%wLocalFolder¥%\index.html|",0)
<endif>

Commands & Syntax > Commands > Networking/Web/E-mail >

ftp GET FILE SIZE - < ftp_filesize >() ... [Pro]

<ftp_filesize>("Variable for result","Remote file","Login name","Password","Silent")
Available in: Professional edition

This command retrieves size of a file on a remote FTP senver.

Parameter name Parameter description
1 Variable for result Variable that receives file size in bytes.
2 Remote file Full path to the remote file (e.g., ftp://pitrinec.com/pub/test.txt).
3 Login name User login name. If empty the "anonymous" is considered.
4 Password User name login password.
5 Silent Silent mode. If set to 1 then the operation progress window is not displayed.

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4 Variable for result=\FileSize, Remote file=ftp://pitrinec.com/pub/test.txt, Login name=
5

Message SHOW " : "Size of "ftp://pitrinec.com/pub/test.txt" file is %WFileSize% bytes." (other parameters: x =
-100, y = -100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This sample retrieves size of file placed on remote FTP sener

<#>

<cmds>

<ftp_filesize>("vFileSize","ftp://pitrinec.com/pub/test.txt","","")

<msg>(-100,-100,"Size of %_wvQuoteChar%ftp://pitrinec.com/pub/test.txt%_vQuoteChard% file is %\FileSize%
bytes.","Message",1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Networking/Web/E-mail >

ftp GET FILE MODIFICATION TIME - < ftp_filetime >() ... [Pro]

<ftp_filetime>("Variable for result","Remote file","Login name","Password","Silent")
Available in: Professional edition

This command retrieves last modification time of a file on a remote FTP server. The time is in form: "MM/DD/YYYY
Hour:Minute:Second".

Parameter name Parameter description

1 Variable for result Variable that receives last file modification time in "MM/DD/YYYY
Hour:Minute:Second" form.

2 Remote file Full path to the remote file (e.g., ftp://pitrinec.com/pub/test.txt).

3 Login name User login name. If empty the "anonymous" is considered.

4 Password User name login password.

5 Silent Silent mode. If set to 1 then the operation progress window is not displayed.

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4 Variable for result=\FileTime, Remote file=ftp://pitrinec.com/pub/test.txt,
Login name=

5 Message SHOW " : "Last modification time of "ftp://pitrinec.com/pub/test.txt" file is %WFileTime%." (other
parameters: x = -100, y = -100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top
=)

6 Message SHOW " : "Do you want to parse the time?" (other parameters: x = -100, y = -100, Window title =
Message, Buttons = Yes and No, Timeout (seconds) =, Always on top =).

7 IF STRING _WIsgButton==YES

8 Variable PARSE "vFileTime" to variable array "vlimeltems" (Delimiter = / :, Trim character =, Variable

array for enumerated items = vVlimeltems, Variable array size = VNumberOfTimeltems)
9 Loop BEGIN Repeat = vNumberOfTimeltems
10 Message SHOW " : "%vTimeltems[_vLoopCounter0]%" (other parameters: x = -100, y = -100, Window
title = Time items:, Buttons = OK, Timeout (seconds) =, Always on top =).
1 Loop END
12 ENDIF

Example (Plain Text):

http://www.perfectkeyboard.com

<#> This sample retrieves last modification time of file placed on remote FTP server
<#>
<cmds>

<ftp_filetime>("vFileTime","ftp://pitrinec.com/pub/test.txt","","")
<msg>(-100,-100,"Last modification time of %_vQuoteChar%ftp://pitrinec.com/pub/test.txt%_vQuoteChar% file is
%WvileTime%.","Message",1)

<msg>(-100,-100,"Do you want to parse the time?","Message",2)
<if_str>("_vwMsgButton==YES")
<var_parse>("vFileTime","/ :","" vTimeltems,WWumberOfTimeltems)
<begloop>(vNumberOfTimeltems)
<msg>(-100,-100,"%\VTimeltems[_VLoopCounter0]%","Time items:",1)
<endloop>
<endif>

Commands & Syntax > Commands > Networking/Web/E-mail >

E-mail POP3: GET LIST - < email_pop3_getlist >() ... [Pro]

<email_pop3_getlist>("Connection Id","Variable receiving number of e-mails","Variable array with e-mail senders","Variable
array with e-mail subjects™)
Available in: Professional edition

This command retrieves list of messages waiting on POP3 e-mail account. Before command can be called a connection to
the e-mail account needs to be opened using command.

Parameter name Parameter description

1 Connection Id An identifier of connection to the e-mail account. Connection is
opened using command.

2 Variable receiving number of e-mails Variable that receives number of e-mail messages waiting on e-mail
account.

3 Variable array with e-mail senders Variable that receives number of e-mail messages waiting on e-mail
account.

4 Variable array with e-mail subjects Variable (array) that receives "subject” field of a waiting e-mail
message.

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS
3
4 Serner=myemails.com, Login name=myaccount, Password=737qw7523#$,
Connection Id = POP3Connection, Port =, TLS/SSL =
5
6 Connection Id = "POP3Connection”, Variable receiving number of e-mails =
"VNumberOfMessages", Variable array with e-mail senders = "WWMessages_From", Variable array with e-mail
subjects = "vMessages_Subject”
7
8 Connection Id = POP3Connection
9
10 IF NUMERIC WumberOfMessages > 0
1 Variable SET "vEmailsList=_vStrEmpty", Message text=""
12 Repeat steps UNTIL "vEmails < VNumberOfMessages" (Counter variable initial value = "vEmails=0",
Counter loop increment = "1")
13 Variable OPERATION "STR_APPEND" (Variable for result = vEmailsList, Input text/variable =
%VvEmailsList%, Parameter 1 = viMessages_Subject[vEmails], Parameter 2 = , Parameter 3 = 0)
14 Variable OPERATION "STR_APPEND" (Variable for result = vEmailsList, Input text/variable =
%VEmailsList%, Parameter 1 = %_\KeyNewLine%, Parameter 2 = , Parameter 3 = 0)
15 Repeat steps END
16 Message SHOW "Information” : "%VvEmailsList%" (other parameters: x = -100, y = -100, Window title =
Emails received, Buttons = OK, Timeout (seconds) = 0, Always on top =).
1 ELSE activate
18 Message SHOW "Error" : "There are no e-mails received.” (other parameters: x = -100, y = -100, Window
title = Emails received, Buttons = OK, Timeout (seconds) = 0, Always on top =).
19

ENDIF

Example (Plain Text):

<#> Thic sample shows how to get list of e-mails received on POP3 account.
<cmds>

<#> Connect to POP3 account first:
<email_pop3_connect>("myemails.com”,"myaccount","737qw7523#$","POP3Connection")

<#> Get list of messages then:
<email_pop3_getlist>("POP3Connection","WNumberOfMessages

,"WMessages_From","vMessages_Subject")

<#> Disconnect from the account:
<email_pop3_disconnect>("POP3Connection™)

<#> Show the list of messages:
<if_num>("WWumberOfMessages > 0")

<varset>("vEmailsList=_vStrEmpty","")
<for>("vEmails=0","vEmails < vNumberOfMessages","1")

<var_oper>(VEmailsList,"%VvEmailsList%",STR_APPEND,"vMessages_Subject[VEmails]","", "0")
<var_oper>(VEmailsList,"%VvEmailsList%",STR_APPEND,"%_vKeyNewLine%","", "0")

<for_end>
<msg>(-100,-100,"%VvEmailsList%","Emails received",1,0,0)
<else>
<msg>(-100,-100,"There are no e-mails received.","Emails received",1,0,2)

<endif>

Commands & Syntax > Commands > Networking/Web/E-mail >

E-mail POP3: GET E-MAIL - < email_pop3_getmail >() ... [Pro]

<email_pop3_getmail>("Connection Id","E-mail number","Variable receiving sender","Variable receiving subject”,"Variable
receiving body")

Available in: Professional edition

This command retrieves defined message waiting on POP3 e-mail account. Before command can be called a connection to
the e-mail account needs to be opened using command. In addition, it is always good to check for the e-mail existence
using before retrieving the particular e-mail using the command.

Parameter name Parameter description

1 Connection Id An identifier of connection to the e-mail account. Connection is opened using
command.

2 E-mail number Message number (index) to get. The first e-mail message has number "0", the
second one has "1" and so on....

3 Variable receiving sender Variable that receives "from" field of the e-mail message.

4 Variable receiving subject Variable that receives "subject"” field of the e-mail message.

5 Variable receiving body Variable that receives "body" field of the e-mail message.

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS

3

4 Serner=myemails.com, Login name=myaccount, Password=737qw7523#$,

Connection Id = POP3Connection, Port =, TLS/SSL =
5
6 Connection Id = "POP3Connection”, Variable receiving number of e-mails =
"WNumOfMessages", Variable array with e-mail senders = ", Variable array with e-mail subjects = ""

7

8 IF NUMERIC vVNumOfMessages > 0

9

10 Connection Id = "POP3Connection”, E-mail number = "0", Variable receiving
sender = "viFrom", Variable receiving subject = "vSubject”, Variable receiving body = "vBody"

11

12 Message SHOW "Information" : "Subject: '%vSubject%' From: 'Y%vFrom%' %vBody%"
(other parameters: x = -100, y = -100, Window title = Emails received, Buttons = OK, Timeout (seconds) =
0, Always on top =).

13 ELSE activate

14 Message SHOW "Error" : "No message is waiting on e-mail account.” (other parameters: x = -100, y =
-100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

15 ENDIF

16

17

Connection Id = POP3Connection

Example (Plain Text):

<#> Thic sample shows how to get list of e-mails received on POP3 account.
<cmds>

<#> Connect to POP3 account first:
<email_pop3_connect>("myemails.com”,"myaccount","737qw7523#$","POP3Connection")

<#> Get number of messages:
<email_pop3_getlist>("POP3Connection”,"WNumOfMessages","","")

<#> Are there some messages?
<if_num>("WNumOfMessages > 0")

<#> Yes, so let's get the first one:
<email_pop3_getmail>("POP3Connection”,"0","viFrom","vSubject","vBody")

<#> Show the list of messages:
<msg>(-100,-100,"Subject: ‘%VvSubject%'

From: '%vFrom%'

%\vBody%","Emails received",1,0,0)

<else>
<msg>(-100,-100,"No message is waiting on e-mail account.","Message",1,,2)
<endif>

<#> Disconnect from the account:
<email_pop3_disconnect>("POP3Connection™)

Commands & Syntax > Commands > Networking/Web/E-mail >

E-mail POP3: DELETE E-MAIL - < email_pop3_deletemail >() ... [Pro]

<email_pop3_deletemail>("Connection Id","E-mail number")

Available in: Professional edition

This command deletes defined message waiting on POP3 e-mail account. Before command can be called a connection to
the e-mail account needs to be opened using command. In addition, it is always good to check for the e-mail existence
using before deleting the particular e-mail using the command.

Parameter name

Parameter description

1 Connection Id An identifier of connection to the e-mail account. Connection is opened using
command.
2 E-mail number Message number (index) to delete. The first e-mail message has number "0", the

second one has "1" and so on....

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

Macro execution: ONLY COMMANDS

Serner=myemails.com, Login name=myaccount, Password=737qw7523#$,
Connection Id = POP3Connection, Port =, TLS/SSL =

Connection Id = "POP3Connection"”, Variable receiving number of e-mails =
"WNumOfMessages", Variable array with e-mail senders = ", Variable array with e-mail subjects = ""

IF NUMERIC WumOfMessages > 0

Message SHOW "Question" : "Do you want to delete e-mail message?" (other parameters: x = -100, y =
-100, Window title = Emails received, Buttons = Yes and No, Timeout (seconds) = 0, Always on top =).

IF STRING _vMsgButton==YES

Connection Id=POP3Connection, E-mail number=0
ENDIF
ELSE activate

Message SHOW "Error" : "No message is waiting on e-mail account.” (other parameters: x = -100, y =
-100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

ENDIF

Connection Id = POP3Connection

Example (Plain Text):

<#> Thic sample shows how to delete e-mail from POP3 account.

<cmds>

<#> Connect to POP3 account first:
<email_pop3_connect>("myemails.com”,"myaccount","737qw7523#$","POP3Connection")

<#> Get number of messages:
<email_pop3_getlist>("POP3Connection”,"WNumOfMessages","","")

<#> Are there some messages?
<if_num>("WNumOfMessages > 0")

<#> Do we want to delete the message?
<msg>(-100,-100,"Do you want to delete e-mail message?","Emails received",2,0,1)

<if_str>("_vMsgButton==YES")
<#> Yes, so let's delete the first one:
<email_pop3_deletemail>("POP3Connection","0")
<endif>

<else>
<msg>(-100,-100,"No message is waiting on e-mail account.","Message",1,,2)
<endif>

<#> Disconnect from the account:
<email_pop3_disconnect>("POP3Connection™)

Commands & Syntax > Commands > Networking/Web/E-mail >

E-mail POP3: CONNECT - < email_pop3_connect >() ... [Pro]

<email_pop3_connect>("Sener","Login name","Password","Connection Id",Port, TLS/SSL)
Available in: Professional edition

This command opens a connection to an e-mail account. This command needs to be called before any other is used.

Parameter name Parameter description
1 Sener Server where e-mail account exist. Example: myemails.com
2 Login name The e-mail account name.
3 Password The account password.
4 Connection Id An identifier of connection to the e-mail account. Other commands use this Id.
5 Port
6 TLS/SSL

Example (Macro Steps):

Macro execution: ONLY COMMANDS

Senver=myemails.com, Login name=myaccount, Password=737qw7523#$,
Connection Id = POP3Connection, Port =, TLS/SSL =

Connection Id = POP3Connection

Example (Plain Text):

<#> Thic sample shows how to get list of e-mails received on POP3 account.
<cmds>

<#> Connect to POP3 account first:
<email_pop3_connect>("myemails.com”,"myaccount","737qw7523#$","POP3Connection")

<#> Do what you need here....

<#> Disconnect from the account:
<email_pop3_disconnect>("POP3Connection™)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Networking/Web/E-mail >

E-mail POP3: DISCONNECT - < email_pop3_disconnect >() ... [Pro]

<email_pop3_disconnect>("Connection Id")
Available in: Professional edition

This command closes a connection to an e-mail account. This command needs to be called after all commands are finished.

Parameter name Parameter description

1 Connection Id An identifier of connection to the e-mail account.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

Senver=myemails.com, Login name=myaccount, Password=737qw7523#$,
Connection Id = POP3Connection, Port =, TLS/SSL =

Connection Id = POP3Connection

Example (Plain Text):

<#> Thic sample shows how to get list of e-mails received on POP3 account.
<cmds>

<#> Connect to POP3 account first:
<email_pop3_connect>("myemails.com”,"myaccount","737qw7523#$","POP3Connection")

<#> Do what you need here....

<#> Disconnect from the account:
<email_pop3_disconnect>("POP3Connection™)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Networking/Web/E-mail >

E-mail SMTP SEND MAIL - < email_smtp_sendmail >() ... [Pro]

<email_smtp_sendmail>("Sener","Login name","Password","To","CC","Subject","Message
text","Attachment”,Port, TLS/SSL,"From (name)","From (e-mail)")
Available in: Professional edition

This command sends an e-mail using SMTP. Unlike , this command does not require any e-mail client to be installed on
the computer.

Parameter name Parameter description
1 Server A SMTP seneer.
2 Login nhame Message number (index) to get. The first e-mail message has number "0", the
second one has "1" and so on....
3 Password Variable that receives "from" field of the e-mail message.
4 To Variable that receives "subject" field of the e-mail message.
5 CcC Variable that receives "body" field of the e-mail message.
6 Subject This is a full path to the file to attach to the e-mail message.
7 Message text Port number to use. If left empty a default port number is used.
8 Attachment If 0, the SSL is not used otherwise the SSL is used.
9 Port
10 TLS/SSL
11 From (name)
12 From (e-mail)

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Sernver = "mysener.com”, Login hame = "myaccount”, Password = "mypassword",
To = "john@something.com”, CC =", Subject = "Hello John", Message text = "friendly letter from your family.
Visit us soon!", Attachment = "", Port = ", TLS/SSL = "No", From (name) = ", From (e-mail) = ""

Example (Plain Text):

<#> Thic sample shows how send an email.
<cmds>

<email_smtp_sendmail>("myserer.com","myaccount”,"mypassword”,"john@something.com”,","Hello John","friendly letter
from your family. Visit us soon!","",,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Networking/Web/E-mail >

Web FILL FORM - < www_fillform >() ... [Pro]

<www_fillform>("URL","Form fields data","Submit button",Window state, Timeout (seconds),Window handle)
Available in: Professional edition

This command opens a web page with form and fills the form by user pre-defined values. Only Internet Explorer browser is
supported.

Parameter name Parameter description

1 URL Link (URL) to the web page (e.g.,
"http://www.pitrinec.com/samples/sampleform.htm").

2 Form fields data The user defined web form data. The user uses "Retrieve URL and Form data"
button in this command edit window. It is possible to edit this field manually,
though, it will be very hard in most cases. The format is this: {frame index}{form
nameXform item typeHform item name}lform item value}{form item selectedy}.

3 Submit button A form button that is to be automatically “clicked" after the form is filled. If this
field is left empty then the form is not submitted.
4 Window state The state of the web browser window: 0 - Normal 1 - Maximized 2 - Minimized
Timeout (seconds) Time in seconds the command waits for the web form is loaded and completed.
6 Window handle

Example (Macro Steps):

Macro execution: ONLY COMMANDS

URL = "http://www. pitrinec.com/samples/sampleform.htm”, Timeout (Seconds) = "15"

Example (Plain Text):

<#> This simple example shows how to fill web form

<cmds>

<www._fillform>("http://www. pitrinec.com/samples/sampleform.htm","{O{Ktext{ TL{John{O{O{Ktext{ T2Z{McKvak {O{OH{Htext
areal{S1HThis is my comment:No

comment{O{OKHKHKOKOKKradioKR1{V 7HO{OH{}radio{R1KV8H1KO0KHradioKR1{VIHOKOH{Kcheckbox {C1KONKOKOKKchec
kbox{C2KONK1K0KKsel-one {H{1HOHOKHKHKOKOKKsel-mul{DogK{H{OKOKHsel-mul{Big dog{H{OKOH}{sel-mulXBig
cat{H{OH{OH{Hsel-mul{Big mouse{{1H{OKHsel-mul{Cat{H{OKOKHsel-mul{Mouse{{1KOH{Ksubmit{B1K{Submit{0}"',"",1,15)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Networking/Web/E-mail >

HTML Page Links - < html_page_links >() ... [Pro]

<html_page_links>("HTML File",Variable array for links,Variable for number of links,"Login name","Password",Variable array

for names)
Available in: Professional edition

This command retrieves all links from the given HTML document. The links are retrieved from all HTML document elements

that contain "href" attribute.

Parameter name Parameter description

1 HTML File (Full) path to the HTML document. It can be either a file on local hardrive or on
a shared drive or it can be a web page.

2 Variable array for links Variable array that receives links.

3 Variable for number of links Variable that receives number of links retrieved.

4 Login name Login user name (used to access password protected web page).

5 Password Login password (used to access password protected web page).

6 Variable array for names Variable array that receives name of the links. This is the text that is between
<a> and .

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 HTML File=https://www.google.com, Variable array for links=wLinks, Variable for number of
links=vLinksNum, Login name =, Password =, Variable array for names =

4 Run APPLICATION "notepad.exe" (other parameters: Parameters =, Folder path = , Window state = Normal).
Macro execution waits for application to finish up to "0" seconds.

5 WAIT FOR Object = "WIN", Event = "OPEN", Parameter = "[* - Notepad|Notepad|#0[#119]", Timeout
(seconds) = "15", Exact = "0"

6 bring "[* - Notepad|Notepad|#0[#119]" window to top (other parameters: Match = Partial,
Window state = Normal, %p4_name =)

7 IF WINDOW "[* - Notepad|Notepad|#0[#119]" Is Active (Match=Partial)

8 Repeat steps UNTIL "%i%<wLinksNum" (Counter variable initial value = "i=0", Counter loop increment =

Illll)
9 Variable INSERT to active application "%\Links[i]%%_wKeyReturn%", Text insertion
method="Default (as defined in settings)"
10 Repeat steps END
11

ENDIF

http://www.perfectkeyboard.com

Example (Plain Text):

<#>This example shows how to use HTML Page Links command
<cmds>
<html_page_links>("https://www.google.com",wLinks,vLinksNum,"","")
<execappex>("notepad.exe","","",0,0)
<waitfor>("WIN","OPEN","[* - Notepad|Notepad|#0[#119]",15,0)
<actwin>("[* - Notepad|Notepad|#0|#119]",0,0)
<if_win>("[* - Notepad|Notepad|#0[#119]","ACT",0)
<for>("i=0","%i%<wLinksNum","1")
<varout>("%WLinks[i]%%_\KeyReturn%",0)
<for_end>
<endif>

Commands & Syntax > Commands >

ODBC

http://www.perfectkeyboard.com

Commands & Syntax > Commands > ODBC >

OPEN - < odbc_open >() ... [Pro]

ODBC OPEN

<odbc_open>("Connection string",Variable for result)

Available in: Professional edition

This command opens a database using an ODBC driver. Note: The ODBC driver must be installed on the computer
otherwise the command will fail. The Macro Toolworks (Perfect Keyboard) is a 32-bit application which requires a 32-bit

ODBC driver.

Parameter name

Parameter description

1 Connection string

ODBC connection string. The connection string format depends on the type of the
database. Get the format of the ODBC connection string from the database
software provider or get the connection string formats from other sources, for
example, https://www.connectionstrings.com

Example for Microsoft Access:

"Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)}; Dbg=c:\users\John
Jimm\\documents\\MyDatabase.accdb;"

2 Variable for result

Variable that receives the handle of the opened database. This handle is then
used in other ODBC commands as a parameter identifying the database.

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS

3

4 Form FIELD "Microsoft Access database:" of type "File path" (Default value=*.accdb, Variable to save field
value=VvDbFile, Form identifier=f1)

5 Form OPEN "f1", Window title="Select Microsoft Access database to open"

6 IF %_vCanceled%==

7

8 Macro EXIT

9 ENDIF

10 IF FILE "%\DbFile%" Not Exist ()

11

12 Message SHOW "Error" : "The file '%VvDbFile%' was not found." (other parameters: x = -100, y = -100,

Window title = , Buttons = OK, Timeout (seconds) = 0, Always on top = No).

13 Macro EXIT

14 ENDIF

15

16 Variable SET "vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)};
Dbg=%VDbFile%;", Message text=""

17

18 ODBC OPEN Connection string=%vConnectionString%, Variable for result=vDbOpen

19 IF %DbOpen%!=0

20 Message SHOW "Information" : "Database was sucessfully open.” (other parameters: x = -100, y = -100,

Window title = , Buttons = OK, Timeout (seconds) = 0, Always on top = No).

21

22 ODBC CLOSE Database handle = %vDbOpen%

23

ENDIF

Example (Plain Text):

<#> This example shows how to open and close a Microsoft Access database
<cmds>

<#> Show a form that lets a user to select the database file
<form_item>("f1","Microsoft Access database:","EDIT_FILE","*.accdb","vDbFile",1)
<form show>("f1","Select Microsoft Access database to open”,"",0,500,0,,,1,1)

<if>("%_vCanceled%==1")
<#> User canceled the selection form, no database file is selected
<exitmacro>

<endif>

<if_file>("%VDbFile%","NOTEXIST","")
<#> User entered a file that does not exist
<msg>(-100,-100,"The file '%vDbFile%' was not found.","",1,0,2,0)
<exitmacro>

<endif>

<#> Build the Microsoft Access connection string
<varset>("vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)}; Dbg=%VDbFile%;","")

<#> Open the database
<odbc_open>("%vConnectionString%",vDbOpen)
<if>("%vDbOpen%!=0")

<msg>(-100,-100,"Database was sucessfully open.","",1,0,0,0)

<#> Close the database
<odbc_close>(%vDbOpen%)
<endif>

Commands & Syntax > Commands > ODBC >

CLOSE - < odbc_close >() ... [Pro]

ODBC CLOSE
<odbc_close>(Database handle)
Available in: Professional edition

This command closes a database previosly open using the "ODBC OPEN" command.

Parameter name

Parameter description

1 Database handle

Database handle. This is the value that was returned from ODBC OPEN
command.

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS

3

4 Form FIELD "Microsoft Access database:" of type "File path" (Default value=*.accdb, Variable to save field
value=VvDbFile, Form identifier=f1)

5 Form OPEN "f1", Window title="Select Microsoft Access database to open"

6 IF %_vCanceled%==

7

8 Macro EXIT

9 ENDIF

10 IF FILE "%\DbFile%" Not Exist ()

11

12 Message SHOW "Error" : "The file '%VvDbFile%' was not found." (other parameters: x = -100, y = -100,

Window title = , Buttons = OK, Timeout (seconds) = 0, Always on top = No).

13 Macro EXIT

14 ENDIF

15

16 Variable SET "vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)};
Dbg=%VDbFile%;", Message text=""

17

18 ODBC OPEN Connection string=%vConnectionString%, Variable for result=vDbOpen

19 IF %DbOpen%!=0

20 Message SHOW "Information" : "Database was sucessfully open.” (other parameters: x = -100, y = -100,

Window title = , Buttons = OK, Timeout (seconds) = 0, Always on top = No).

21

22 ODBC CLOSE Database handle = %vDbOpen%

23

ENDIF

Example (Plain Text):

<#> This example shows how to open and close a Microsoft Access database
<cmds>

<#> Show a form that lets a user to select the database file
<form_item>("f1","Microsoft Access database:","EDIT_FILE","*.accdb","vDbFile",1)
<form show>("f1","Select Microsoft Access database to open”,"",0,500,0,,,1,1)

<if>("%_vCanceled%==1")
<#> User canceled the selection form, no database file is selected
<exitmacro>

<endif>

<if_file>("%VDbFile%","NOTEXIST","")
<#> User entered a file that does not exist
<msg>(-100,-100,"The file '%vDbFile%' was not found.","",1,0,2,0)
<exitmacro>

<endif>

<#> Build the Microsoft Access connection string
<varset>("vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)}; Dbg=%VDbFile%;","")

<#> Open the database
<odbc_open>("%vConnectionString%",vDbOpen)
<if>("%vDbOpen%!=0")

<msg>(-100,-100,"Database was sucessfully open.","",1,0,0,0)

<#> Close the database
<odbc_close>(%vDbOpen%)
<endif>

Commands & Syntax > Commands > ODBC >

Execute SQL - < odbc_exec_sql >() ... [Pro]

ODBC Execute SQL

<odbc_exec_sql>(Database handle,"Execute SQL")

Available in: Professional edition

This command executes an SQL command on a database previosly open using the "ODBC OPEN" command.

Parameter name

Parameter description

1 Database handle Database handle. This is the value that was returned from ODBC OPEN
command.
2 Execute SQL SQL command. For example:

UPDATE BookTable SET Count=5 WHERE ID=2

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS

3

4 Form FIELD "Microsoft Access database:" of type "File path" (Default value=*.accdb, Variable to save field

value=VvDbFile, Form identifier=f1)

5 Form OPEN "f1", Window title="Select Microsoft Access database to open"

6 IF %_vCanceled%==

7

8
Macro EXIT

9 ENDIF

10 IF FILE "%\DbFile%" Not Exist ()

11

12 Message SHOW "Error" : "The file '%\VvDbFile%' was not found." (other parameters: x = -100, y = -100,
Window title = , Buttons = OK, Timeout (seconds) = 0, Always on top = No).

13 Macro EXIT

14 ENDIF

15

16 Variable SET "vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)};

Dbg=%VDbFile%;", Message text=""

17

18 ODBC OPEN Connection string=%vConnectionString%, Variable for result=vDbOpen

19 IF %DbOpen%!=0

20

21 ODBC Execute SQL Database handle=%vDbOpen%, Execute SQL=UPDATE TestTablel SET AGE=33
WHERE FRIEND="John'

22

23 ODBC CLOSE Database handle = %vDbOpen%

24

ENDIF

Example (Plain Text):

<#> This example shows how to execute an SQL command on opened Microsoft Access database
<cmds>

<#> Show a form that lets a user to select the database file
<form_item>("f1","Microsoft Access database:","EDIT_FILE","*.accdb","vDbFile",1)
<form_show>("f1","Select Microsoft Access database to open”,"",0,500,0,,,1,1)

<if>("%_vCanceled%==1")
<#> User canceled the selection form, no database file is selected
<exitmacro>

<endif>

<if_file>("%VDbFile%","NOTEXIST","")
<#> User entered a file that does not exist
<msg>(-100,-100,"The file '%vDbFile%' was not found.","",1,0,2,0)
<exitmacro>

<endif>

<#> Build the Microsoft Access connection string
<varset>("vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)}; Dbg=%VDbFile%;","")

<#> Open the database
<odbc_open>("%vConnectionString%",vDbOpen)
<if>("%vDbOpen%!=0")

<#> Set John's age to 33
<odbc_exec_sql>(%vDbOpen%,"UPDATE TestTablel SET AGE=33 WHERE FRIEND="'John™)

<#> Close the database
<odbc_close>(%vDbOpen%)
<endif>

Commands & Syntax > Commands > ODBC >

Select SQL - < odbc_select >() ... [Pro]

ODBC Select SQL
<odbc_select>(Database handle,"Select SQL",Variable for result)
Available in: Professional edition

This command executes an SQL select command on a database previosly open using the "ODBC OPEN" command. The
selected data set then can be retrived using ODBC Select GET command and enumerated using ODBC Select NEXT
command.

Parameter name Parameter description
1 Database handle Database handle. This is the value that was returned from ODBC OPEN
command.
2 Select SQL Select SQL command. For example:

UPDATE BookTable SET Count=5 WHERE ID=2

3 Variable for result Variable that receives identifier of the selected data set. This value is used in the
ODBC Select GET and ODBC Select NEXT commands. The value is non-zero if
the data set is not empty.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Macro execution: ONLY COMMANDS

Form FIELD "Microsoft Access database:" of type "File path" (Default value=*.accdb, Variable to save field
value=VvDbFile, Form identifier=f1)

Form OPEN "f1", Window title="Select Microsoft Access database to open"

IF %_vCanceled%==

Macro EXIT
ENDIF

IF FILE "%VDbFile%" Not Exist ()

Message SHOW "Error" : "The file '%\VvDbFile%' was not found." (other parameters: x = -100, y = -100,
Window title = , Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Macro EXIT

ENDIF

Variable SET "vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)};
Dbg=%VDbFile%;", Message text=""

ODBC OPEN Connection string=%vConnectionString%, Variable for result=vDbOpen

IF %VvDbOpen%!=0

ODBC Select SQL (Database handle = "%vDbOpen%", Select SQL = "SELECT * FROM TestTablel ",
Variable for result = "vDataSet")

Repeat steps UNTIL "%vDataSet%!=0" (Counter variable initial value = "", Counter loop increment = "")

ODBC Select GET Database handle = "%vDbOpen%", Select handle = "%vDataSet%", Field name =
"FRIEND", Variable for result = "viFriend"

ODBC Select GET Database handle = "%vDbOpen%", Select handle = "%vDataSet%", Field name =
"AGE", Variable for result = "vAge"

Example (Plain Text):

<#> This example shows how to get values from the selected data set of the Microsoft Access database
<cmds>

<#> Show a form that lets a user to select the database file
<form_item>("f1","Microsoft Access database:","EDIT_FILE","*.accdb","vDbFile",1)
<form_show>("f1","Select Microsoft Access database to open”,"",0,500,0,,,1,1)

<if>("%_vCanceled%==1")
<#> User canceled the selection form, no database file is selected
<exitmacro>

<endif>

<if_file>("%VDbFile%","NOTEXIST","")
<#> User entered a file that does not exist
<msg>(-100,-100,"The file '%vDbFile%' was not found.","",1,0,2,0)
<exitmacro>

<endif>

<#> Build the Microsoft Access connection string
<varset>("vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)}; Dbgq=%\DbFile%;","")

<#> Open the database
<odbc_open>("%VvConnectionString%",vDbOpen)
<if>("%vDbOpen%!=0")

<#> Select whole table
<odbc_select>(%vDbOpen%,"SELECT * FROM TestTablel " ,vDataSet)<#>

<#> Cycle in the data set
<for>("","%vDataSet%!=0","")

<#> Get data from the record
<odbc_select_get>(%vDbOpen%,%vDataSet%,"FRIEND",vFriend)
<odbc_select_get>(%vDbOpen%,%vDataSet%,"AGE",vAge)
<msg>(-100,-100,"Friend=%WFriend%

Age=%vAge%","",1,0,0,0)

<#> Mowe to next record
<odbc_select_next>(%vDbOpen%,vDataSet)

<for_end>

<#> Close the database
<odbc_close>(%vDbOpen%)
<endif>

Commands & Syntax > Commands > ODBC >

Select GET - < odbc_select_get >() ... [Pro]

ODBC Select GET

<odbc_select_get>(Database handle,Select handle,"Field name",Variable for result)

Available in: Professional edition

This command retrieves data from a data set previously selected by the ODBC Select SQL command.

Parameter name Parameter description
1 Database handle Database handle. This is the value that was returned from ODBC OPEN
command.
2 Select handle Data set handle. This is the value that was returned from the ODBC Select SQL
command.
3 Field name Name of the field to be retrieved.
4 Variable for result Name of the variable that receives the field value.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Macro execution: ONLY COMMANDS

Form FIELD "Microsoft Access database:" of type "File path" (Default value=*.accdb, Variable to save field
value=VvDbFile, Form identifier=f1)

Form OPEN "f1", Window title="Select Microsoft Access database to open"

IF %_vCanceled%==

Macro EXIT
ENDIF

IF FILE "%VDbFile%" Not Exist ()

Message SHOW "Error" : "The file '%\VvDbFile%' was not found." (other parameters: x = -100, y = -100,
Window title = , Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Macro EXIT

ENDIF

Variable SET "vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)};
Dbg=%VDbFile%;", Message text=""

ODBC OPEN Connection string=%vConnectionString%, Variable for result=vDbOpen

IF %VvDbOpen%!=0

ODBC Select SQL (Database handle = "%vDbOpen%", Select SQL = "SELECT * FROM TestTablel ",
Variable for result = "vDataSet")

Repeat steps UNTIL "%vDataSet%!=0" (Counter variable initial value = "", Counter loop increment = "")

ODBC Select GET Database handle = "%vDbOpen%", Select handle = "%vDataSet%", Field name =
"FRIEND", Variable for result = "viFriend"

ODBC Select GET Database handle = "%vDbOpen%", Select handle = "%vDataSet%", Field name =
"AGE", Variable for result = "vAge"

Example (Plain Text):

<#> This example shows how to get values from the selected data set of the Microsoft Access database
<cmds>

<#> Show a form that lets a user to select the database file
<form_item>("f1","Microsoft Access database:","EDIT_FILE","*.accdb","vDbFile",1)
<form_show>("f1","Select Microsoft Access database to open”,"",0,500,0,,,1,1)

<if>("%_vCanceled%==1")
<#> User canceled the selection form, no database file is selected
<exitmacro>

<endif>

<if_file>("%VDbFile%","NOTEXIST","")
<#> User entered a file that does not exist
<msg>(-100,-100,"The file '%vDbFile%' was not found.","",1,0,2,0)
<exitmacro>

<endif>

<#> Build the Microsoft Access connection string
<varset>("vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)}; Dbgq=%\DbFile%;","")

<#> Open the database
<odbc_open>("%VvConnectionString%",vDbOpen)
<if>("%vDbOpen%!=0")

<#> Select whole table
<odbc_select>(%vDbOpen%,"SELECT * FROM TestTablel " ,vDataSet)<#>

<#> Cycle in the data set
<for>("","%vDataSet%!=0","")

<#> Get data from the record
<odbc_select_get>(%vDbOpen%,%vDataSet%,"FRIEND",vFriend)
<odbc_select_get>(%vDbOpen%,%vDataSet%,"AGE",vAge)
<msg>(-100,-100,"Friend=%WFriend%

Age=%vAge%","",1,0,0,0)

<#> Mowe to next record
<odbc_select_next>(%vDbOpen%,vDataSet)

<for_end>

<#> Close the database
<odbc_close>(%vDbOpen%)
<endif>

Commands & Syntax > Commands > ODBC >

Select NEXT - < odbc_select_next >() ... [Pro]

ODBC Select NEXT

<odbc_select_next>(Database handle,Select handle)

Available in: Professional edition

This command mowes the currently selected record in the data set to the next record.

Parameter name

Parameter description

1 Database handle Database handle. This is the value that was returned from ODBC OPEN
command.
2 Select handle Name of the variable that contains the data set handle. This is typically the save

variable that is use as a last parameter in the ODBC Select SQL command.
When the end of the data set is reached then the value of the variable is set to 0.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Macro execution: ONLY COMMANDS

Form FIELD "Microsoft Access database:" of type "File path" (Default value=*.accdb, Variable to save field
value=VvDbFile, Form identifier=f1)

Form OPEN "f1", Window title="Select Microsoft Access database to open"

IF %_vCanceled%==

Macro EXIT
ENDIF

IF FILE "%VDbFile%" Not Exist ()

Message SHOW "Error" : "The file '%\VvDbFile%' was not found." (other parameters: x = -100, y = -100,
Window title = , Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Macro EXIT

ENDIF

Variable SET "vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)};
Dbg=%VDbFile%;", Message text=""

ODBC OPEN Connection string=%vConnectionString%, Variable for result=vDbOpen

IF %VvDbOpen%!=0

ODBC Select SQL (Database handle = "%vDbOpen%", Select SQL = "SELECT * FROM TestTablel ",
Variable for result = "vDataSet")

Repeat steps UNTIL "%vDataSet%!=0" (Counter variable initial value = "", Counter loop increment = "")

ODBC Select GET Database handle = "%vDbOpen%", Select handle = "%vDataSet%", Field name =
"FRIEND", Variable for result = "viFriend"

ODBC Select GET Database handle = "%vDbOpen%", Select handle = "%vDataSet%", Field name =
"AGE", Variable for result = "vAge"

Example (Plain Text):

<#> This example shows how to get values from the selected data set of the Microsoft Access database
<cmds>

<#> Show a form that lets a user to select the database file
<form_item>("f1","Microsoft Access database:","EDIT_FILE","*.accdb","vDbFile",1)
<form_show>("f1","Select Microsoft Access database to open”,"",0,500,0,,,1,1)

<if>("%_vCanceled%==1")
<#> User canceled the selection form, no database file is selected
<exitmacro>

<endif>

<if_file>("%VDbFile%","NOTEXIST","")
<#> User entered a file that does not exist
<msg>(-100,-100,"The file '%vDbFile%' was not found.","",1,0,2,0)
<exitmacro>

<endif>

<#> Build the Microsoft Access connection string
<varset>("vConnectionString=Driver={MICROSOFT ACCESS DRIVER (*.mdb, *.accdb)}; Dbgq=%\DbFile%;","")

<#> Open the database
<odbc_open>("%VvConnectionString%",vDbOpen)
<if>("%vDbOpen%!=0")

<#> Select whole table
<odbc_select>(%vDbOpen%,"SELECT * FROM TestTablel " ,vDataSet)<#>

<#> Cycle in the data set
<for>("","%vDataSet%!=0","")

<#> Get data from the record
<odbc_select_get>(%vDbOpen%,%vDataSet%,"FRIEND",vFriend)
<odbc_select_get>(%vDbOpen%,%vDataSet%,"AGE",vAge)
<msg>(-100,-100,"Friend=%WFriend%

Age=%vAge%","",1,0,0,0)

<#> Mowe to next record
<odbc_select_next>(%vDbOpen%,vDataSet)

<for_end>

<#> Close the database
<odbc_close>(%vDbOpen%)
<endif>

Commands & Syntax > Commands >

Run/Execute

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Run/Execute >

MACRO - < run >() ... [Pro]

Run MACRO

<run>("Macro","Parameters”,"Time to wait")
Available in: Professional edition

Runs other macro (specified by name). It is possible to pass the called macro a parameter and it is also possible to receive ¢
returns some data then the data are available through "_vMacroResult" system variable right after the command finishes exec

Note below parameters specific to "Clipboard macros".

|Parameter name

Parameter description

1 |Macro

Name or ID (showing in the "general" tab in macro definition view) of the macro to run.

2 | Parameters

Parameter that will be passed to the remote macro. The called macro can retrieve the paramet

- If the macro called is "Clipboard macro" with a text (including rich text) content then it is pos:
other text specified in the parameter. The syntax is:

replace_what:EXISTING_TEXT;replace_by:NEW_TEXT;

Example:
replace_what:rep01;replace_by:%vCustomerName%:;replace_what:rep02;replace_by:%wHelpP
Where EXISTING_TEXT is a text in the "Clipboard macro" and NEW_TEXT is a new text (can |
before the "Clipboard macro" is pasted.

There can be multiple replace_what;replace_by; pairs in the parameter. It is recommended to |
like "%rep_01%") as a text to replace since different rich text formats in "Clipboard macro" ent
differently and replacement could fail.

This feature can be used to create nicely formatted templates of documents and e-mails that ¢

- If the macro called is "Clipboard macro” then it is possible to specify here "load_only" param:
copied to clipboard but not pasted to an application.

3 | Time to wait

Time in milliseconds to wait before next command is executed. If this parameter is empty ther

Example (Macro Steps):

Example (Plain Text):

Macro execution: ONLY COMMANDS
Run MACRO ToUpper, Parameters = lowercase string, Time to wait =

Message SHOW "Information™ : "% _vMacroResult%" (other parameters: x = -100, }
Timeout (seconds) = 0, Always on top =).

<#> This example shows how to call a macro called "ToUpper" using <run> command.
<#> We pass parameter "lowercase string" that the "ToUpper"

http://www.perfectkeyboard.com

<#> macro conwerts to uper case and passes back as a result.
<#>

<cmds>

<run>("ToUpper","lowercase string")
<msg>(-100,-100,"%_wvMacroResult%","And the result is",1,0,0)

Commands & Syntax > Commands > Run/Execute >

SELECTED MACRO - < listbox >() ... [Pro]

Run SELECTED MACRO
<listbox>("Window Title","Macro 1 name", "Macro 1 description”, "Macro 2 name", "Macro 2 description", ...)
Available in: Professional edition

This command displays a list of macros a user can choose from. The selected macro is executed and the control is
returned to the calling macro again. If user clicks "Cancel” button the _vCanceled system variable is set to 1 (otherwise it is
0) to allow to distinguish between situations when OK or Cancel button was clicked.

Parameter name Parameter description
1 Window title Title of the macro selection window.
2 Macro Name of the macro (or macro Id) to run if selected.
3 Description Description of the macro so that user knows what to select.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

Run SELECTED MACRO "Window title = Select your option", macros to select from: _macrol - 1. Macro;
_macro2 - 2. Macro--d.e.f.a.u.l.t--; _macro3 - 3. Macro

Example (Plain Text):

<#> This macro demonstrates how to create a list of macros

<#> a user can select from to run a particular macro

<H#>

<cmds>

<listbox>("Select your option","_macrol","1. Macro","_macro2","2. Macro--d.e.f.a.u.l.t--","_macro3","3. Macro")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Run/Execute >

.MCR FILE - < extmacro >() ... [Pro]

Run .MCR FILE
<extmacro>("File path",Text insertion method,"Parameters”,"Time to wait")
Available in: Professional edition

Runs macro saved in an external text file. It is possible to pass the external macro a parameter and it is also possible to
receive a return data from the macro. If the macro returns some data then the data are available through "_vMacroResult"
system variable right after the command finishes execution.

Parameter name Parameter description

1 File path Name of the macro to run. (The macro name should be unique if it is run from
other macros using command).

2 Text insertion method If 1, the text from the MacroFile is inserted to the active window through the
clipboard. (This option is intended only for plain text with no commands.) If O, the
macro from the MacroFile is played back the same way as it was regular macro.

3 Parameters Parameter that will be passed to the remote macro. The called macro can retrieve
the parameter data from "_vMacroParameter" system variable.

4 Time to wait Time in milliseconds to wait before next command is executed. If this parameter
is empty then a default wait time is used.

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 Run .MCR FILE run macro "%_vMacroFileFolder%Samples\Simple form example.mcr" with parameter "". Text

insertion method is "Keystrokes sequence". Parameters =

Example (Plain Text):

<#> This macro starts macro from external file.

<#>

<cmds>

<extmacro>("%_vMacroFileFolder% Samples\Simple form example.mcr",0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Run/Execute >

APPLICATION - < execappex >() ... [Free]

Run APPLICATION

<execappex>("File path","Parameters”,"Folder path",Window state, Time to wait)

Available in: Free edition

Starts an application or opens a file or web page.

Parameter name Parameter description
1 File path (Full) path to the application's file (e.g., "c:\program files\app\app.exe").
2 Parameters List of parameters the application should be started with (e.g., "/n /g").
3 Folder path Start up directory. The directory is made current before the application is started.
4 Window state The state of the window:
0 - Normal
1 - Maximized
2 - Minimized
3 - Hidden
5 Time to wait Must be 0.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

Run APPLICATION "notepad.exe" (other parameters: Parameters =, Folder path = , Window state =

Maximize). Macro execution waits for application to finish up to "0" seconds.

Example (Plain Text):

<#> This command starts Notepad maximized.

<H>
<cmds>

<execappex>("notepad.exe","","",1,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Run/Execute >

EXTERNAL SCRIPT FILE - < script_file >() ... [Pro]

Run EXTERNAL SCRIPT FILE

<script_file>("File",Wait until finished)

Available in: Professional edition

Executes a script from external file.

Parameter name Parameter description

1 File Script file to run. There are these file types supported:
.bss - Basic Script file
.bsx - encoded Basic Script file
\bs - VB Script file
.js - Java Script file
The file should be either full path (e.g., "c:\myscripts\scriptl.bss") or just file
name (e.g., "script.bss"). Partial or relative paths (e.g., "..\scripts\script.bss") are
not supported at this time. All the scripts that you call using just the name (e.qg.,
"script.bss") must be saved in the "scripts" directory. In the "Basic Script"
scripts, it is possible to use '#Uses "some-file" directives that allows to use
symbols defined in other modules. In the "uses" directives, both BSS and BSX
files can be used (they also have to be in "scripts" directory or full path must be
supplied).

2 Wait until finished If equal to 1, the macro waits until script execution is finished. If equal to 0, the
macro continues execution without waiting for script to finish.

Example (Macro Steps):

Variable OPERATION "SELECT _FILE" (Variable for result = vScript, Input text/variable = *.bss, Parameter 1 =

1
2 Macro execution: ONLY COMMANDS
3
Select Script To Run, Parameter 2 = , Parameter 3 = 0)
4 IF STRING _\Canceled==
5 Macro EXIT
6 ENDIF
7

Example (Plain Text):

<#> This macro runs selected script
<#>
<cmds>

Run EXTERNAL SCRIPT FILE "vScript", Wait until finished="No"

<var_oper>(vScript,"*.bss",SELECT_FILE,"Select Script To Run","", "0")
<if_str>("_vCanceled==1") <exitmacro> <endif>

<script_file>("vScript",0)

http://www.perfectkeyboard.com

473

Commands & Syntax > Commands > Run/Execute >

FILE CONTEXT MENU COMMAND - < run_ctxcommand >() ... [Pro]

Run FILE CONTEXT MENU COMMAND
<run_ctxcommand>("File path",Menu command,Unused,Unused)
Available in: Professional edition

This command performs specified Windows shell "context menu command".
Note: When a user right-clicks on a file in Windows Explorer a menu so called "context menu" is shown. There are listed

several commands a user can perform on the file (like "Open", "Delete", "Copy", etc.).

Parameter name Parameter description

1 File path (Full) path to the file (e.g., "c:\mydocuments\docl1.doc") to run a command on.
Can be a static text or variable containing text.

2 Menu command Menu command as shown on the menu. For example: Open, Copy, Delete, etc. If
the command is in submenu then use "\" to separate submenu. Example: Send
To\My Documents, WinZip\Add to Zip file..., etc. Commands can contain also
wildcards (* and ?). Example: WinZ*\Add

Unused Must be 0.

4 Unused Must be 0.

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 Run FILE CONTEXT MENU COMMAND "Properties" on file "c:\temp"

Example (Plain Text):

<#> This command opens property dialog of "C:\temp" directory
<#>

<cmds>

<run_ctxcommand>("c:\temp",Properties,0,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Run/Execute >

EXTERNAL COMMAND - < extcmd >() ... [Pro]

Run EXTERNAL COMMAND
<extcmd>("Command executable","Parameters"”, Timeout (seconds),Variable receiving result)
Available in: Professional edition

This command executes an external command. The external commands allows to extend the macro language capabilities
by adding new commands. The external command can be any executable file that takes parameters (optionally) and prints
result to standard output. The macro engine takes the printed result from standard output and assigns it to user-defined
macro language result variable.

Note: The external command can be written in VBS, for example. Howeer, the VBS engine outputs some copyright
information at the start of the script execution. If the user does not want to have such the information as a part of own script
result then the user can put this line at the begin of VBS script:

Wscript.StdOut.Write ">>>cmd_results>>>"

This line tells the macro engine where actual results start and the macro engine then ignores the output printed before.

Parameter name Parameter description

1 Command executable (Full) path to an executable file or just a name with ".ec...." extension (for
example, "SimplePing.ec.\bs"). If the full path is not supplied then the executable
file must be located in "ExternalCommands" sub-folder in installation folder or in
the same folder where calling macro file is located.

2 Parameters Parameters that will be passed to the external command. The number of the
parameters depends on the external command.

3 Timeout (seconds) Timeout in seconds. If the external command does not finishes its execution in
the defined timeout then the command fails.

4 Variable receiving result This is the user-defined variable that will receive the external command result.

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 Run EXTERNAL COMMAND Command executable = "SimplePing.ec.\wbs", Parameters = "www.pitrinec.com”,
Timeout (seconds) = "15", Variable receiving result = "vResult"
4 IF STRING WResult==
5 Message SHOW "Information" : "Ping OK." (other parameters: x = -100, y = -100, Window title = Message,
Buttons = OK, Timeout (seconds) = 0, Always on top =).
6 .
ELSE activate
7 Message SHOW "Information" : "Ping failed." (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) = 0, Always on top =).
8

ENDIF

Example (Plain Text):

http://www.perfectkeyboard.com

<#> This command pings to the www.pitrinec.com web site
<cmds>
<extcmd>("SimplePing.ec.vbs","www.pitrinec.com",15,vResult)
<if_str>("vResult==1")

<msg>(-100,-100,"Ping OK.","Message",1,0,0)
<else>

<msg>(-100,-100,"Ping failed.","Message",1,0,0)
<endif>

Commands & Syntax > Commands >

System

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Screensaver START - < scrsavestart > ... [Pro]

<scrsavestart>
Available in: Professional edition

This command starts screensaver.

Example (Macro Steps):

Example (Plain Text):

<#> This macro starts screensaver
<scrsawestart>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Set system TIME - < setsystime >() ... [Pro]

<setsystime>(Hour,Minute,Second)
Available in: Professional edition

Sets system time. Note: This command requires administrator privileges.

Parameter name Parameter description
1 Hour Hour of the newly set system time.
2 Minute Minute of the newly set system time.
3 Second Second of the newly set system time.

Example (Macro Steps):

Macro execution: ONLY COMMANDS
Hour=5, Minute=0, Second=0

Example (Plain Text):

<#> This macro will set system time to 05:00:00
<#>

<cmds>

<setsystime>(5,0,0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Set system DATE - < setsysdate >() ... [Pro]

<setsysdate>(Year,Month,Day)
Available in: Professional edition

Sets system date. Note: Thos cpmmand requires administrator privileges.

Parameter name Parameter description
1 Year Year of the newly set date.
2 Month Month of the newly set date.
3 Day Day of the newly set date.

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 Year=2004, Month=2, Day=1

Example (Plain Text):

<#> This macro will set system date Feb 1, 2004
<#>

<cmds>

<setsysdate>(2004,2,1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Shutdown - < shutdown >() ... [Pro]

<shutdown>("Mode",Force)
Available in: Professional edition

This command shuts down/reboot computer or log off user.

Parameter name

Parameter description

1 Mode

Can be one of these values:
"LOGOFF"

"REBOOT"

"SHUTDOWN"
"POWEROFF"

2 Force

If 1, the shutdown will be forced even if there is an application that prevents
system from shutdown. If O, the shutdown will proceed only if all the running
applications accepts system shutdown query.

Example (Macro Steps):

2 Macro execution: ONLY COMMANDS

Example (Plain Text):

<#> This macro will reboot computer
<#>

<cmds>

<shutdown>("REBOQOT",0)

"Restart", Force="No"

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Registry CREATE KEY - < reg_createkey >() ... [Pro]

<reg_createkey>("Registry key")
Available in: Professional edition

This command creates a registry key. There are these registry roots supported:
HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA

HKEY_DYN_DATA

Parameter name Parameter description

1 Registry key Full path of registry key to be created. Example:
"HKEY_CURRENT_USER\Software\MyCompany\NewKey"

Example (Macro Steps):

Macro execution: ONLY COMMANDS

"HKEY_CURRENT_USER\Software\TestKey"

Example (Plain Text):

<#> This command create new TestKey key

<#> in 'HKEY_CURRENT_USER\Software'

<cmds>
<reg_createkey>("HKEY_CURRENT_USER\Software\TestKey")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Registry DELETE KEY - < reg_deletekey >() ... [Pro]

<reg_deletekey>("Registry key")
Available in: Professional edition

This command deletes specified registry key. There are these registry roots supported:
HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA

HKEY_DYN_DATA

Parameter name Parameter description

1 Registry key Full path of registry key to be deleted. Example:
HKEY_CURRENT_USER\Software\MyCompany\NewKey

Example (Macro Steps):

Macro execution: ONLY COMMANDS

"HKEY_CURRENT_USER\Software\TestKey"

Example (Plain Text):

<#> This command deletes TestKey' key

<#> from 'HKEY_CURRENT_USER\Software'

<cmds>
<reg_deletekey>("HKEY_CURRENT_USER\Software\TestKey")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Registry DELETE VALUE - < reg_deletevalue >() ... [Pro]

<reg_deletevalue>("Registry key","Value")
Available in: Professional edition

This command deletes defined registry value. There are these registry roots supported:
HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA

HKEY_DYN_DATA

Parameter name Parameter description

1 Registry key Full path of registry key to be deleted. Example:
HKEY_CURRENT_USER\Software\MyCompany\NewKey

2 Value Name of the value. Example: ProductName.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

Registry key=HKEY_CURRENT_USER\Software\TestKey, Value=ProductName

Example (Plain Text):

<#> This command retrieves ProductName value

<#> of 'HKEY_CURRENT_USER\Software\TestKey'

<cmds>
<reg_deletevalue>("HKEY_CURRENT_USER\Software\TestKey","ProductName")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Registry ENUMERATE SUBKEYS - < reg_enumsubkeys >() ... [Pro]

<reg_enumsubkeys>("Registry key","Variable array for enumerated items","Variable array size")
Available in: Professional edition

This command enumerates all subkeys of the given key. The result (array of subkeys names) is saved in variable. There are
these registry roots supported:

HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA

HKEY_DYN_DATA

Parameter name Parameter description
1 Registry key Full path of registry key to be deleted. Example:
HKEY_CURRENT_USER\Software\MyCompany\NewKey
2 Variable array for enumerated items Variable (array) that receives subkeys found.
3 Variable array size Variable that receives number of subkeys found.

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4 Registry key=HKEY_CURRENT_USER\Software, Variable array for
enumerated items=vSubKey, Variable array size=v\NumOfSubkeys

5

Message SHOW " : "There are %vWNumOfSubkeys% registry subkeys of ' HKEY_CURRENT_USER\Software'
registry key. Showing first three: %vSubKey[0]% %VvSubKey[1]% %VvSubKey[2]% " (other parameters: x = -100,
y = -100, Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This example shows how to enumerate registry keys

<#>

<cmds>

<reg_enumsubkeys>("HKEY_CURRENT_USER\Software","vSubKey","vNumOfSubkeys")

<msg>(-100,-100,"There are %vNumOfSubkeys% registry subkeys of 'HKEY_CURRENT_USER\Software' registry key.
Showing first three:

%VvSubKey[0]%

%VvSubKey[1]%

%VSubKey[2]%

","Message",1)

http://www.perfectkeyboard.com

486

Commands & Syntax > Commands > System >

Registry ENUMERATE VALUES - < reg_enumvalues >() ... [Pro]

<reg_enumvalues>("Registry key","Variable array for enumerated items","Variable array size")
Available in: Professional edition

This command enumerates all values of the given key. The result (array of subkeys names) is saved in variable. There are
these registry roots supported:

HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA

HKEY_DYN_DATA

Parameter name Parameter description
1 Registry key Full path of registry key to be deleted. Example:
HKEY_CURRENT_USER\Software\MyCompany\NewKey
2 Variable array for enumerated items Variable (array) that receives values found.
3 Variable array size Variable that receives number of values found.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Registry
key=HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer, Variable array for
enumerated items=Walue, Variable array size=vNumOfValues

4

Message SHOW " : "There are %vNumOfValues% registry subkeys of
'HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer' registry key. Showing first
three: %wWalue[0]% %W alue[1]% %Walue[2]% " (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This example shows how to enumerate registry values

<H#>

<cmds>
<reg_enumvalues>("HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer","Walue","WNumOfValu
es")

<msg>(-100,-100,"There are %vNumOfValues% registry subkeys of
'HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer' registry key. Showing first three:

%wWalue[0]%
%Walue[1]%
%Walue[2]%
","Message",1)

http://www.perfectkeyboard.com

488

Commands & Syntax > Commands > System >

Registry GET VALUE - < reg_getvalue >() ... [Pro]

<reg_getvalue>("Registry key","Value name","Variable to save data")
Available in: Professional edition

This command retrieves defined registry value. There are these registry roots supported:
HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA

HKEY_DYN_DATA

Parameter name Parameter description
1 Registry key Full path of registry key to be deleted. Example:
HKEY_CURRENT_USER\Software\MyCompany\NewKey
2 Value name Name of the value. Example: ProductName.
3 Variable to save data Variable that receives value retrieved.

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4 "V' = value of "HKEY_CURRENT_USER\Software\TestKey\ProductName"
5

Message SHOW " : "The retrieved value: %w46" (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This command retrieves ProductName value

<#> of 'HKEY_CURRENT_USER\Software\TestKey"

<cmds>
<reg_getvalue>("HKEY_CURRENT_USER\Software\TestKey","ProductName","v")
<msg>(-100,-100,"The retrieved value: %Wo","Message",1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Registry SET VALUE - < reg_setvalue >() ... [Pro]

<reg_setvalue>("Registry key","Value name","Value","Type")
Available in: Professional edition

This command sets defined registry value. There are these registry roots supported:
HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA

HKEY_DYN_DATA

Parameter name Parameter description
1 Registry key Full path of registry key to be deleted. Example:
HKEY_CURRENT_USER\Software\MyCompany\NewKey
2 Value name Name of the value. Example: ProductName.
3 Value Value. Example: Macro Toolworks.
4 Type 0 - String value.

1 - Numeric value.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

"HKEY_CURRENT_USER\Software\TestKey\ProductName"" = "Something"

Example (Plain Text):

<#> This command sets ProductName value

<#> of 'HKEY_CURRENT_USER\Software\TestKey"

<#> to Something

<cmds>
<reg_setvalue>("HKEY_CURRENT_USER\Software\TestKey","ProductName","Something","0")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Printer SET DEFAULT - < printer_setdefault >() ... [Pro]

<printer_setdefault>("Printer name")
Available in: Professional edition

Sets specified printer to be the default one.

Parameter name Parameter description

1 Printer name Name of the printer to be set as default.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

"PRN1"

Example (Plain Text):

<#> This macro changes default printer
<#>

<cmds>

<printer_setdefault>("PRN1")

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Speakers VOLUME - < multimedia >() ... [Pro]

<multimedia>(Unused,Volume)
Available in: Professional edition

This command controls speakers.

Parameter name Parameter description

1 Unused Must be VOLUME.

2 Volume One of these values:
MUTE

UNMUTE
TOGGLEMUTE

upP

DOWN

Example (Macro Steps):

Macro execution: ONLY COMMANDS

"Mute"

Example (Plain Text):

<#> This macro will mute speakers
<#>

<cmds>
<multimedia>(VOLUME,MUTE)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Process KILL - < process_kill >() ... [Pro]

<process_Kkill>(File)
Available in: Professional edition

This command Kills defined process. Killing process is different from closing application (window) using "winclose"
command. Killing process may result in loss of unsaved data in the process.

Parameter name Parameter description

1 File Name of the executable file (example: notepad.exe) to kill or process
identification number (example: 6712).

Example (Macro Steps):

Macro execution: ONLY COMMANDS

"notepad.exe”

Example (Plain Text):

<#> This example kills Notepad
<#>

<cmds>
<process_Kkill>(notepad.exe)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Screenasaver ENABLE - < scrsaver_enable > ... [Pro]

<scrsaver_enable>
Available in: Professional edition

This command enables screensaver.

Example (Macro Steps):

Example (Plain Text):

<#> This example enables screensaver
<scrsawer_enable>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Screenasaver DISABLE - < scrsaver_disable > ... [Pro]

<scrsaver_disable>
Available in: Professional edition

This command disables screensaver.

Example (Macro Steps):

Example (Plain Text):

<#> This example disables screensaver
<scrsaver_disable>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > System >

Process ENUMERATE - < process_enum >() ... [Pro]

<process_enum>("Variable array for names","Variable array size","Variable array for process Id's")
Available in: Professional edition

This command enumerates all running processes.

Parameter name Parameter description
1 Variable array for names Variable (array) that receives names of running processes.
2 Variable array size Variable that receives number of process.
3 Variable array for process Id's Variable (array) that receives Ids of running processes.

Example (Macro Steps):

http://www.perfectkeyboard.com

2
3 Macro execution: ONLY COMMANDS
4 Variable array for names=vProcess, Variable array size=vNumOfProcesses
5 Run APPLICATION "notepad.exe" (other parameters: Parameters = , Folder path = , Window state = Normal).
Macro execution waits for application to finish up to "0" seconds.
6 WAIT FOR Object = "WIN", Event = "ACT", Parameter = "Notepad", Timeout (seconds) = "5", Exact = "0"
7 IF WINDOW "Notepad" Is Active (Match=Partial)
8 Macro execution: KEYS / FREE TEXT + COMMANDS
° These processes are running #. [name ;30 [\Device\HarddiskVolume3\Program Files
(x86)\iPass\Open Mobile\omsi\iPlatformService.exe ; 17721 1d]:
10
Keyboard Insert NEW LINE
11
Keyboard Insert NEW LINE
12 Macro execution: ONLY COMMANDS
13 Loop BEGIN Repeat = VNumOfProcesses
14 Variable INSERT to active application "%_\vLoopCounter% [%wvProcess[vLoopCounter0]% ;
%\WProcesslds[_vLoopCounter0]%]", Text insertion method="Default (as defined in settings)"
15 Macro execution: KEYS / FREE TEXT + COMMANDS
16
Keyboard Insert NEW LINE
1 Macro execution: ONLY COMMANDS
18 Loop END
19 ENDIF

Example (Plain Text):

<#> This example enumerates running processes and lists them in Notepad
<#>

<cmds>

<process_enum>("vProcess","WNumOfProcesses","vProcesslds")

<execappex>("notepad.exe",","",0,0)

<waitfor>("WIN","ACT","Notepad",5,0)

<if_win>("Notepad","ACT",0)

<keys>These processes are running #. [name ;30 [\Device\HarddiskVolume3\Program Files (x86)\iPass\Open
Mobile\omsi\iPlatformSenice.exe ; 1772] Id]:<newline><#>

<newline><#>

<cmds>

<begloop>(WumOfProcesses)

<varout>("%_wLoopCounter% [%vProcess[_\vLoopCounter0]% ; %wProcesslds[\vLoopCounter0]%]","0")<#>
<keys><#>

<newline><#>

<cmds>
<endloop>

<endif>

Commands & Syntax > Commands > System >

WINDOWS SERVICE - < winsvc >() ... [Pro]

<winswvc>("Senice Name"”,"Command")
Available in: Professional edition

The command changes state of a Windows senvice.
Note: This command requires the program to run with "Administrator privilages”

Parameter name Parameter description
1 Senice Name The Windows senice name
2 Command Command to change the Windows seniice state:

"START" - starts the senice.
"STOP" - stops the senice.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOWS SERVICE "WebClient" is "NOT running" then execute following steps
4 "WebClient", Command="Start"

5

ENDIF

Example (Plain Text):

<#>This macro shows how to use "if winswc" and "winswc" commands

<cmds>

<if_winsvc>("WebClient","IS_NOT_RUNNING")
<winsve>("WebClient","START")

<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Text & Variable Manipulation

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Text & Variable Manipulation >

SET - < varset >() ... [Pro]

Variable SET
<varset>("Variable","Message text")
Available in: Professional edition

Declares variable and sets its value.

Parameter name Parameter description

1 Variable Defines variable and its value in the form "variable=VALUE". Variable can be any
string (different from system variables). The value can be either constant string or
other variable or empty string. There are four basic behaviors of the command:

1. VALUE is supplied. In such case the variable is assigned the VALUE.
For example, "vNumber=10" or "Name=John".

2. List of possible values is supplied in VALUE. Each single item in the list
is separated by "_OR_" ("|" delimiter character is depricated since
version 8.1.0). For example,
"Wames=Jane_OR_Paul_OR_Chris_OR_Michael".

3. VALUE is an empty string ("\Name="). In such the case, a dialog
window with the MessageTitle appears and prompts user to enter the
variable value. Note: To assign an empty string to the variable use this
construction: "VEmptyStr=_vStrEmpty".

4. VALUE is equal to "YES/NQ". In such the case, a "yes/no" message
box withMessageTitle appears. If user selects "yes" button the "YES"
value is assigned to the variable. If the user selects "no" button the "NO"
value is assigned. For example, "vDoYouWant=YES/NQO".

In cases #2 and #3 abowe, if user clicks "Cancel" button the _vCanceled system
variable is set to 1 (otherwise it is 0) to allow macro designer to distinguish
between situations when OK or Cancel button was clicked. Instead of using
VARIABLE_NAME=VALUE syntax, also VARIABLE_NAME=IVALUE can be
used. In this case, the VALUE is assigned to the variable and the rules #2 - #4
abowe are not applied (hard assignement).

2 Message text A title of the window that appears in cases 1 and 3 abowe.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

Macro execution: ONLY COMMANDS
Variable SET "WName=", Message text="Insert Your Name"
IF STRING _\Canceled==
Macro EXIT
ENDIF
Variable SET "vShow=YES/NO", Message text="Do you want to see your name ?"
IF STRING vShow==YES

Message SHOW " : "WName" (other parameters: x = 100, y = 100, Window title = Your name is:, Buttons
= OK, Timeout (seconds) =, Always on top =).

ENDIF
Variable SET "WName=Jane_OR_Paul_OR_Michael_OR_Chris", Message text="Who is my best friend ?"
IF STRING _\Canceled==
Macro EXIT
ENDIF
IF STRING vName==Jane

Message SHOW " : "Yes!" (other parameters: x = 100, y = 100, Window title = Message, Buttons = OK,
Timeout (seconds) =, Always on top =).

ELSE activate

Message SHOW " : "No!" (other parameters: x = 100, y = 100, Window title = Message, Buttons = OK,
Timeout (seconds) =, Always on top =).

ENDIF

Example (Plain Text):

<#> This macro demonstrates <varset> command

<#>
<cmds>

<varset>("vName=","Insert Your Name")
<if_str>("_vCanceled==1") <exitmacro> <endif>

<varset>("vShow=YES/NO","Do you want to see your name ?")

<if_Str> ("\/S ho ::YES")
<msg>(100,100,"vName","Your name is:",1)

<endif>

<varset>("vName=Jane_OR_Paul_OR_Michael OR_Chris","Who is my best friend ?")
<if_str>("_vCanceled==1") <exitmacro> <endif>

<if_str>("vName==Jane")
<msg>(100,100,"Yes!","Message",1)
<else>
<msg>(100,100,"No!","Message",1)
<endif>

Commands & Syntax > Commands > Text & Variable Manipulation >

INSERT to active application - < varout >() ... [Pro]

Variable INSERT to active application
<varout>("Variable", Text insertion method)
Available in: Professional edition

Sends (outputs) variable's value to the active window as a sequence of keystrokes or through the clipboard.

Parameter name Parameter description
1 Variable Variable to send out.
2 Text insertion method If 0, the variable content is send to the active window the way it is defined in

program settings ("Options" dialog box - click "Tools/Options" menu command). If
1, the variable value is send to the active window through the clipboard. If 2, the
variable value is send to the active window as a sequence of keyboard
keystrokes.

Example (Macro Steps):

1

2

3 Macro execution: ONLY COMMANDS

4 IF WINDOW "Notepad" Is Open (Match=Partial)

5 bring "Notepad" window to top (other parameters: Match = Partial, Window state =
Normal, %p4_name = no)

6 WAIT FOR Object = "WIN", Event = "ACT", Parameter = "Notepad", Timeout (seconds) = "5", Exact = "0"

7 IF WINDOW "Notepad" Is Active (Match=Partial)

8 Variable SET "vText=This is Notepad", Message text=""

9 Variable INSERT to active application "vText", Text insertion method="Default (as defined in

settings)"

10 ENDIF

11 ELSE activate

12 Message SHOW " : "Notepad is not running.” (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

13

ENDIF

Example (Plain Text):

<#> This macro demonstrates use of <varout> command
<#> The macro activates Notepad and writes a text in it.
<H>

http://www.perfectkeyboard.com

<cmds>
<if_win>("Notepad","OPEN",0)
<actwin>("Notepad",0,0,"no")
<waitfor>("WIN","ACT","Notepad",5,0)
<if_win>("Notepad","ACT",0)
<varset>("vText=This is Notepad","")
<varout>("vText",0)
<endif>
<else>
<msg>(100,100,"Notepad is not running.","Message",1)
<endif>)

Commands & Syntax > Commands > Text & Variable Manipulation >

SAVE - < var_save >() ... [Pro]

Variable SAVE
<var_save>("Variable","File")
Available in: Professional edition

The command sawes (persists) variable value to a file. The variable content can be later loaded again using command. The
same file can be used for multiple (unlimited number) variables because each variable has its own section within the file.

Parameter name Parameter description
1 Variable Variable to sawve value to file.
2 File The file to sawe variable value to.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "WName=John", Message text=""

4 Variable SAVE "WName" to file "c:_myvars.dat

5 Variable SET "WName=Michael", Message text=""

6 Variable LOAD from file "c:_myvars.dat" to "viName"
7

Message SHOW " : "WName" (other parameters: x = 100, y = 100, Window title = Message, Buttons = OK,
Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This macro demonstrates use of <var_load> and <var_sawe> commands
<#>

<cmds>

<varset>("viName=John","")

<var_sawe>("Wame","c:_myvars.dat")
<varset>("vName=Michael","")
<var_load>("vName","c:_myvars.dat")

<msg>(100,100,"vName","Message",1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Text & Variable Manipulation >

LOAD - < var_load >() ... [Pro]

Variable LOAD
<var_load>("Variable","File")
Available in: Professional edition

Loads variable value from a file. (The value was previously saved using command.)

Parameter name Parameter description
1 Variable Variable to load value from file.
2 File The file created by command that contains variable value.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "WName=John", Message text=""

4 Variable SAVE "WName" to file "c:_myvars.dat

5 Variable SET "WName=Michael", Message text=""

6 Variable LOAD from file "c:_myvars.dat" to "viName"
7

Message SHOW " : "WName" (other parameters: x = 100, y = 100, Window title = Message, Buttons = OK,
Timeout (seconds) =, Always on top =).

Example (Plain Text):

<#> This macro demonstrates use of <var_load> and <var_save> commands
<#>

<cmds>

<varset>("viName=John","")

<var_sawe>("Wame","c:_myvars.dat")
<varset>("vName=Michael","")
<var_load>("vName","c:_myvars.dat")

<msg>(100,100,"vName","Message",1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Text & Variable Manipulation >

PARSE - < var_parse >() ... [Pro]

Variable PARSE

<var_parse>("Input text/variable","Delimiter","Trim character",Variable array for enumerated items,Variable array size)

Available in: Professional edition

This command parses input text (variable value). Parts of the input text are expected to be delimited by characters (space,
comma, new line, etc.) defined as a command parameter. The parsed parts of the input text are saved in parameter variable
(array). In addition, each parsed part can be trimmed using characters defined.

Parameter name

Parameter description

1 Input text/variable

Text (or variable containing text) to be parsed.

2 Delimiter

Characters used to delimit input text (for example, dot, comma,
space new line, etc.).

Trim character

Characters used to trim each parsed part of the input text.

4 Variable array for enumerated items

Variable (array) that receives each input text piece parsed.

Variable array size

Variable that receives the number of pieces.

Example (Macro Steps):

Macro execution: ONLY COMMANDS

Variable PARSE "Peter, Paul, John, Jim " to variable array "WName" (Delimiter = ,, Trim character =, Variable

array for enumerated items = vName, Variable array size = VNumOfNames)

Loop BEGIN Repeat = VNumOfNames

Message SHOW " : "WName[_vLoopCounter0]" (other parameters: x = 100, y = 100, Window title =

Message, Buttons = OK, Timeout (seconds) =, Always on top =).

Loop END

Example (Plain Text):

<#> This example shows how to use <var_parse> command
<#> The input text consisting from names delimited by comma
<#> will be parsed and each name will be shown in message box.

<cmds>

<var_parse>("Peter, Paul, John, Jm ",","," ",yName,MNumOfNames)

<begloop>(MNumOfNames)

<msg>(100,100,"vName[_vLoopCounter0]","Message”,1)

<endloop>

http://www.perfectkeyboard.com

509

Commands & Syntax > Commands > Text & Variable Manipulation >

OPERATION - < var_oper >() ... [Pro]

Variable OPERATION
<var_oper>(Variable for result,"Input text/variable”,Operation,"Parameter 1","Parameter 2","Parameter 3")
Available in: Professional edition

Performs selected operation on input variable (or constant string/value) and saves the result to other variable.

http://www.perfectkeyboard.com

Parameter name

Parameter description

Variable for result

Variable that receives result of the operation.

Input text/variable

Either variable or constant text (string, numerical value) to perform operation on.

Operation

One of these operations:

CALC_EXPRESSION
- calculates arithmetical expression defined by input. "Parameter 1" tells how
many numbers will follow after decimal point.

RANDOM_NUMBER
- generates random number from O to "Parameter 1" range.

SELECT_FILE

- shows "Open File" dialog and saves full path of the selected file to "Variable for
result”. If user clicks "Cancel" button the _vCanceled system variable is set to 1

(otherwise it is 0) to allow macro designer to distinguish between situations when
OK or Cancel button was clicked.

SELECT_FOLDER

- shows "Select Folder" dialog and saves full path of the selected folder to
"Variable for result”. If user clicks "Cancel" button the _vCanceled system
variable is set to 1 (otherwise it is 0) to allow macro designer to distinguish
between situations when OK or Cancel button was clicked.

GET_TEXT_FROM_CLIPBOARD
- copies text from clipboard to "Variable for result".

STR_APPEND
- appends the Input to the content of "Variable for result".

STR_LEFT
- characters from begin of the Input (hnumber of characters is given by "Parameter
1") are copied to "Variable for result".

STR_RIGHT
- characters from end of the Input (hnumber of characters is given by "Parameter
1") are copied to "Variable for result".

STR_MID
- characters beginning at "Parameter 1" position (humber of characters is given
by "Parameter 2") are copied to "Variable for result".

STR_TRIMLEFT
- characters specified in "Parameter 1" are deleted from begin of the Input.

STR_TRIMRIGHT
- characters specified in "Parameter 1" are deleted from end of the Input.

STR_INSERT
- string defined by "Parameter 2" is inserted to Input string to position "Parameter
1"

STR_REPLACE
- In the Input, original string "Parameter 1" is replaced by "Parameter 2".

STR_DELETE
- in the Input, deletes "Parameter 2" (number of characters to delete) characters
starting at position "Parameter 1".

STR_FIND
- finds first occurrence of the "Parameter 1" string in the Input. The search is
started from "Parameter 2" position. If not found then the "Variable for result"

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable OPERATION "GET_TEXT_FROM_CLIPBOARD" (Variable for result = vClipboardText, Input

text/variable = , Parameter 1 = , Parameter 2 = , Parameter 3 = 0)

4 IF STRING \ClipboardText!=_vStrEmpty

5 Variable OPERATION "STR_UPPER" (Variable for result = \ClipboardText, Input text/variable =
%\ClipboardText%, Parameter 1 = , Parameter 2 = , Parameter 3 = 0)

6 . "

VClipboardText

7 Message SHOW " : "Text in clipboard is converted to uppercase.” (other parameters: x = -100, y = -100,
Window title = Message, Buttons = OK, Timeout (seconds) =, Always on top =).

8

ENDIF

Example (Plain Text):

<#> This example converts text in clipboard to upper-case

<#>

<cmds>
<var_oper>(\ClipboardText,"",GET_TEXT_FROM_CLIPBOARD,"","", "0")
<if_str>("vClipboardText!=_vStrEmpty")

<var_oper>(\ClipboardText,"%VvClipboardText%",STR_UPPER,","", "0")
<clpput>("vClipboardText")
<msg>(-100,-100,"Text in clipboard is converted to uppercase.","Message"”,1)

<endif>

Commands & Syntax > Commands > Text & Variable Manipulation >

Regular Expression Find - < regex_find >() ... [Pro]

Variable Regular Expression Find

<regex_find>("Input text/variable","Pattern","Start index",Variable for match, Variable for index, Variable for size)

Available in: Professional edition

This command searches in the input text for a matching regular expression pattern. The command searches from the
position passed as "Start index". If a match is found then the matching substring, index where it is located in the input text,

and its length is returned.

Parameter name Parameter description

1 Input text/variable Input text.

2 Pattern Regular expression pattern.

3 Start index Index (position) in the text where to start searching. 0 means that the input text is
searched from beginning.

4 Variable for match Name of the variable that will receive substring that matches the regular
expression pattern. If no match is found then this variable will contain empty
string (equal to %_VStrEmpty%).

5 Variable for index Name of the variable that will receive index (position) in the input text where the
match was found. If no match is found then this variable will contain -1.

6 Variable for size Name of the variable that will receive the length of the matching substring found. If
no match is found then this variable will contain 0.

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS

3 Variable SET "vSearchFrom=0", Message text=""

4 Repeat steps UNTIL "1" (Counter variable initial value = "", Counter loop increment = ")

5 Variable Regular Expression Find Pattern "\b[A-Za-z0-9. %+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}" in "This is
a text that contains e-mail addresses such as john.a.smith@comp-comp-company.com or
FredieX@dot.dot. TV or other...." (Start index=%VvSearchFrom%, Variable for match = viM, Variable for index
=W, Variable for size = \S)

6 IF %W%==%_\StrEmpty%

7 Message SHOW "Information" : "No more e-mail addresses found." (other parameters: x = -100, y =

-100, Window title =, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

8 Repeat steps BREAK

9 :

ELSE activate
10 Message SHOW "Information” : "E-mail found: %vM% Position in text: %vi% Length: %vS%" (other
parameters: x = -100, y = -100, Window title = , Buttons = OK, Timeout (seconds) = 0, Always on top =
No).

1 Variable SET "%vSearchFrom%=EXPR(%V%+%VS%)", Message text=""

12 ENDIF

13

Repeat steps END

Example (Plain Text):

<#>This example shows how to find an e-mail addresses in input text

<cmds>>
<varset>("vSearchFrom=0","")
<f0r> (uu'ulnyuu)

<regex_find>("This is a text that contains e-mail addresses such as john.a.smith@comp-comp-company.com or
FredieX@dot.dot. TV or other....","\b[A-Za-z0-9. %+-]+ @[A-Za-z0-9.-]+\.[A-Za-z]{2,}","%VSearchFrom%" ,vM,\,VS)
<if>("%vM%==%_VStrEmpty%")
<msg>(-100,-100,"No more e-mail addresses found.","",1,0,0,0)
<for_break>
<else>
<msg>(-100,-100,"E-mail found: %viM%
Position in text: %v%
Length: %vS%","",1,0,0,0)
<varset>("%vSearchFrom%=EXPR(%\W%+%VvS%)","")
<endif>
<for_end>

Commands & Syntax > Commands > Text & Variable Manipulation >

ENCRYPT/DECRYPT - < data_crypt >() ... [Pro]

Variable ENCRYPT/DECRYPT
<data_crypt>("Input",Variable for result,"Password",ENCRYPT/DECRYPT)
Available in: Professional edition

This command encodes or decodes input text using provided password. The encoded/decoded text is put into variable. The
variable can be used in other macro commands. If input text cannot be decoded due to a wrong password then empty string
is saved in the variable.

Parameter name Parameter description
1 Input The input text to be encoded/decoded.
2 Variable for result Name of the variable the encoded/decoded text is saved in.
3 Password Password used to encode/decode the input text.
4 ENCRYPT/DECRYPT ENCRYPT or DECRYPT

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable SET "WPwd1=", Message text="Enter password to encrypt text"

4 Variable ENCRYPT/DECRYPT Input = "Original input text to be encrypted", Variable for result = "vCT",
Password = "%vPwd1%", ENCRYPT/DECRYPT = "ENCRYPT"

5 Message SHOW "Information" : "%vCT%" (other parameters: x = -100, y = -100, Window title = Encrypted text
looks like this, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

6 Variable SET "WPwd2=", Message text="Enter password to decrypt text"

7 Variable ENCRYPT/DECRYPT Input = "%VvCT%", Variable for result = "vCT2", Password = "%wPwd2%",
ENCRYPT/DECRYPT = "DECRYPT"

8

Message SHOW "Information” : "%vCT2%" (other parameters: x = -100, y = -100, Window title = If you provided
correct decrypt password you see the original text, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Example (Plain Text):

<#>This example shows how to use 'data_crypt' command

<cmds>

<varset>("vPwd1=","Enter password to encrypt text")

<data_crypt>("Original input text to be encrypted",vCT,"%wWPwd1%",ENCRYPT)
<msg>(-100,-100,"%VvCT%","Encrypted text looks like this",1,0,0,0)

<varset>("vPwd2=","Enter password to decrypt text")
<data_crypt>("%vCT%",vCT2,"%Pwd2%",DECRYPT)
<msg>(-100,-100,"%VvCT2%","If you provided correct decrypt password you see the original text",1,0,0,0)

http://www.perfectkeyboard.com

516

Commands & Syntax > Commands > Text & Variable Manipulation >

PARSE - < text_parse >() ... [Pro]

Variable PARSE

<text_parse>("Input text/variable","Pattern”,"Variable for matching elements","Variable for number of matching
elements”,"Additional options™)

Available in: Professional edition

This command parses input text to multiple pieces based on the pattern provided. The pattern consists of asterisks (*) and
delimter substrings. The parses extracts the parts of the text that correspond to asterisks.

Example:

Input text:

Customer info:

Name: John Smith

Phone: +001 564123123 Email: jsmith@email.com

Pattern:Name:*Phone:*Email:*

Data extracted by parser as result: John Smith, +001 564123123, jsmith@email.com

Parameter name Parameter description

1 Input text/variable Input text or variable (such as %vinputText%)

2 Pattern Pattern or variable containing pattern text

3 Variable for matching elements Name of the array variable that will receive the parsed out
pieces of the input text

4 Variable for number of matching elements Name of the variable that contains number of items in the array
variable

5 Additional options Parse options (options are case sensitive):

-nc - Not case sensitive when matching delimiter substrings.
-t - trim left. Spaces, tabs, new lines are removed from the
beggining of the parsed out pieces.

-tr - trim right. Spaces, tabs, new lines are removed from the
end of the parsed out pieces.

-Ip - Repeat pattern

Example (Macro Steps):

1

2 Variable SET "vinput=Customers info: Name: John Smith Phone: +001 564123123 Email: jsmith@email.com
Name: Jack Back Phone: +002 779835 Email: jp@comp.com”, Message text=""

3 Variable PARSE Input text/variable = %vinput%, Pattern = name:*phone:*email:*, Variable for matching
elements = items, Variable for number of matching elements = vitemsSize, Additional options = -nc -tl -tr -rp

4 Message SHOW "Information” : "Input text is: %vinput%" (other parameters: x = -100, y = -100, Window title =
, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

5

Message SHOW "Information" : "%vitemsSize% items retrieved: %vitems[0]% %vitems[1]% %vitems[2]%
%vitems[3]% %vitems[4]% %vitems[5]% " (other parameters: x = -100, y = -100, Window title =, Buttons =
OK, Timeout (seconds) = 0, Always on top = No).

Example (Plain Text):

<#> This example demonstrates how to use "text parse" command

http://www.perfectkeyboard.com

<#>

<varset>("vinput=Customers info:

Name: John Smith

Phone: +001 564123123

Email: jsmith@email.com

Name: Jack Back

Phone: +002 779835

Email: jp@comp.com”,"")<#>
<text_parse>("%Mvinput%","name:*phone:*email:*","vitems","vitemsSize","-nc -tl -tr -rp","p6")<#>
<msg>(-100,-100,"Input text is:

%\input%","",1,0,0,0)<#>
<msg>(-100,-100,"%vitemsSize% items retrieved:

%vitems[0]%
%vitems[1]%
%vitems[2]%
%vitems[3]%
%vitems[4]%
%vitems[5]%
""" 1,0,0,0)

Commands & Syntax > Commands >

User Interaction

http://www.perfectkeyboard.com

Commands & Syntax > Commands > User Interaction >

SOUND - < beep >() ... [Pro]

SOUND
<beep>("Sound file",Repeat)
Available in: Professional edition

This command plays user defined sound (.wav file) or just beeps.

Parameter name Parameter description
1 Sound file Full path to the file (.wav) to play. If empty then just a beep is played.
2 Repeat How many times the sound should be repeated.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Variable OPERATION "SELECT _FILE" (Variable for result = vSoundFile, Input text/variable = , Parameter 1 =
Select File, Parameter 2 =, Parameter 3 = 0)

4

SOUND play sound "%vSoundFile%" for "1" times

Example (Plain Text):

<#> This macro will play the sound file you select

<#>

<cmds>

<var_oper>(vSoundFile,"",SELECT_FILE,"Select File","", "0")
<beep>("%vSoundFile%",1)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > User Interaction >

Message SHOW - < msg >() ... [Free]

Message SHOW

<msg>(x,y,"Message text","Window title",Buttons, Timeout (seconds), Type of message,Always on top)

Available in: Free edition

Shows a message window on the screen.

Parameter name Parameter description

1 X X-coordinate of the message window position. If both X-coordinate and
Y-coordinate is equal to -100 then the message window is centered on the
screen.

2 y Y-coordinate of the message window position.

3 Message text Text that is displayed in the message window.

4 Window title Title of the message window.

5 Buttons Button(s) available in the message window. When user clicks the button then the
message window is closed. Can be one of these values:
0 - No button to close the message window is available. The "msgoff' command
must be used to close the message window.
1 - OK button is shown in the message window.
2 - Yes and No buttons are shown in the message window. If user clicks Yes
button, the "_vMsgButton" system variable is set to "YES". Otherwise the
" wMsgButton" variable contains "NO:.

6 Timeout (seconds) Timeout in seconds. If the message is still showing on the screen after this time
period then it is automatically closed.

7 Type of message Type of icon that will be displayed in the message window.

8 Always on top Allows to keep the message window always on top of other windows so that it is
visible to the user.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

Macro execution: ONLY COMMANDS

Message SHOW "Information” : "This is an information message...." (other parameters: x = -100, y = -100,
Window title = Message, Buttons = OK, Timeout (seconds) = 0, Always on top =).

Message SHOW "Information” : "...and this message has 10 seconds timeout...." (other parameters: x = -100,
y = -100, Window title = Message, Buttons = OK, Timeout (seconds) = 10, Always on top =).

Message SHOW "Question" : "...and you can also answer questions...." (other parameters: x = -100, y =
-100, Window title = Message, Buttons = Yes and No, Timeout (seconds) = 0, Always on top =).

IF _vMsgButton==YES

Message SHOW "Information" : "You clicked YES!" (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) = 0, Always on top =).

ELSE activate

Message SHOW "Error" : "You clicked NO" (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) = 0, Always on top =).

ENDIF
Message SHOW "Information” : "And this message without a button will close if you press 'F10' key." (other
parameters: x = -100, y = -100, Window title = Message, Buttons = None, Timeout (seconds) = 0, Always on
top =).

WAIT FOR Object = "KEY", Event = "PRESS", Parameter = ", Timeout (seconds) = "15", Exact = "0"

Message CLOSE

Message SHOW "Information" : "Message content A (Wait for 2 seconds)" (other parameters: x = -100, y =
-100, Window title = Message A, Buttons = None, Timeout (seconds) = 0, Always on top = No).

WAIT wait "2000" ms (time is constant: "No")

Message SHOW "Information" : "Message content B (Wait for 2 seconds)" (other parameters: x = -100, y =
-100, Window title = Message B, Buttons = None, Timeout (seconds) = 0, Always on top = No).

WAIT wait "2000" ms (time is constant: "No")

Message SHOW "Information" : "Message content C (Wait for 2 seconds)" (other parameters: x = -100, y =
-100, Window title = Message C, Buttons = None, Timeout (seconds) = 0, Always on top = No).

WAIT wait "2000" ms (time is constant: "No")

Message CLOSE

Example (Plain Text):

<#> This macro will show various use of message window

<cmds>

<msg>(-100,-100,"This is an information message....","Message",1,0,0)
<msg>(-100,-100,"...and this message has 10 seconds timeout....","Message",1,10,0)

<msg>(-100,-100,"...and you can also answer questions....","Message",2,0,1)
<if>("_wsgButton==YES")
<msg>(-100,-100,"You clicked YES!","Message",1,0,0)
<else>
<msg>(-100,-100,"You clicked NO","Message",1,0,2)
<endif>

<msg>(-100,-100,"And this message without a button will close if you press 'F10' key.","Message",0,0,0)
<waitfor>("KEY","PRESS","<F10>",15,0)
<msgoff>

<#>Message content is updated several times:
<msg>(-100,-100,"Message content A
(Wait for 2 seconds)","Message A",0,0,0,0)
<wx>(2000,0)

<msg>(-100,-100,"Message content B
(Wait for 2 seconds)","Message B",0,0,0,0)
<wx>(2000,0)

<msg>(-100,-100,"Message content C
(Wait for 2 seconds)","Message C",0,0,0,0)
<wx>(2000,0)

<msgoff>

Commands & Syntax > Commands > User Interaction >

Message CLOSE - < msgoff > ... [Free]

Message CLOSE
<msgoff>
Available in: Free edition

This command closes message window that was previously opened with no buttons to show. If the message window
command is called subsequently before it is closed by "msgoff' then the message content is updated and message box
window is resized (if necessary).

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Message SHOW " : "Wait for 5 seconds..." (other parameters: x = -100, y = -100, Window title = Message,
Buttons = None, Timeout (seconds) =, Always on top =).

4 WAIT wait "5000" ms (time is constant: ")

5

Message CLOSE

Example (Plain Text):

<#> This macro will display message window and closes it after 5 seconds
<#>

<cmds>

<msg>(-100,-100,"Wait for 5 seconds...","Message",0)

<wx>(5000)

<msgoff>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > User Interaction >

E-mail COMPOSE - < email >() ... [Pro]

E-mail COMPOSE
<email>("E-mail address”,Window state)
Available in: Professional edition

Creates new e-mail message using default e-mail client.

Parameter name

Parameter description

1 E-mail address

E-mail address (e.g., support@mycompany.com). The address can be empty.

2 Window state

The state of the window: 0 - Normal 1 - Maximized 2 - Minimized

Example (Macro Steps):

1
2 Macro execution: ONLY COMMANDS
3 E-mail COMPOSE create new e-mail using default mail client. E-mail address =, Window state = Normal

Example (Plain Text):

<#> This command creates new mail message

<>
<cmds>
<email>("",0)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > User Interaction >

Net drive WINDOW connect - <
netcondrivedig > ... [Pro]

Net drive WINDOW connect
<netcondrivedlg>
Available in: Professional edition

This command opens a window that allows to connect (map) a network folder to a local drive letter.

Example (Macro Steps):

Net drive WINDOW connect

Example (Plain Text):

<#> This macro opens a window to map network folder to a drive letter
<netcondrivedlg>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > User Interaction >

Net drive WINDOW disconnect - <
netdiscondrivedig > ... [Pro]

Net drive WINDOW disconnect
<netdiscondrivedig>
Available in: Professional edition

This command opens a window that allows to disconnect (unmap) a network folder from a local drive letter.

Example (Macro Steps):

Net drive WINDOW disconnect

Example (Plain Text):

<#> This macro opens a window to unmap network folder from a drive letter
<netdiscondrivedig>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > User Interaction >

Form OPEN - < form_show >() ... [Pro]

Form OPEN

<form_show>("Form identifier","Window title","Icon file",Icon index,Width,Clear items from form on close,x,y,Show OK and

Cancel buttons,Number of columns)

Available in: Professional edition

This command displays the form with fields previously added by "form_item" commands. If the the "Cancel" button is
clicked or Esc key is pressed then the _vCanceled system variable is set to 1. Otherwise it is 0 indicating the user did not

cancel the form.

Parameter name Parameter description

1 Form identifier An identifier of the form (for example, "FM1").

2 Window title The title of the form window.

3 Icon file The full path to the file with the icon to show.

4 Icon index Index of the icon within the icon file.

5 Width Width of the form window in pixels. If left empty, the default value is used.

6 Clear items from form on close If set to 1, all form fields are remowved after the form is closed. It is
necessary to call "form_item" commands before the same form can be
shown again by "form_show" command. If the option is 0 then the form
fields remain attached to the form.

7 X X-coordinate of the form position on the computer screen. If not supplied,
the form is centered.

8 y Y-coordinate of the form position on the computer screen. If not supplied,
the form is centered.

9 Show OK and Cancel buttons If this parameter is set to "1" then "OK" and "Cancel" buttons are
automatically displayed in the form. If this parameter is set to "0" then
"OK" and "Cancel" buttons are not showing in the form window and it
contains only controls that are added by "form_item" command.

10 Number of columns Number of columns. It is possible to arrange the fields into multiple
columns.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Macro execution: ONLY COMMANDS

Form FIELD "This is a simple calculator for: + - * /" of type "Static text" (Default value=0, Variable to save field
value=, Form identifier=FM1)

Form FIELD "" of type "Separator” (Default value=0, Variable to save field value=, Form identifier=FM1)

Form FIELD "Operand 1:" of type "Text edit" (Default value=0, Variable to sawe field value=vOperl, Form
identifier=FM1)

Form FIELD "Operation:" of type "Drop down list" (Default value=Plus|Minus|Multiply|Divide, Variable to save
field value=vOperation, Form identifier=FM1)

Form FIELD "Operand 2:" of type "Text edit" (Default value=0, Variable to sawe field value=vOper2, Form
identifier=FM1)

Form FIELD "" of type "Separator” (Default value=0, Variable to save field value=, Form identifier=FM1)

Form FIELD "Continue ?" of type "Check box" (Default value=YES, Variable to save field value=vAgain, Form
identifier=FM1)

Jump TARGET "Ibl_Again”
Form OPEN "FM1", Window title="Simple Calculator"
IF STRING _\Canceled==

Macro EXIT
ENDIF
IF STRING vOperation==Plus

Variable SET "vOperl=EXPR(%VvOperl%+%vOper2%)", Message text=""
ENDIF
IF STRING vOperation==Minus

Variable SET "vOperl=EXPR(%VOperl%-%vOper2%)", Message text=""
ENDIF
IF STRING vOperation==Multiply

Variable SET "vOperl=EXPR(%VvOperl%*%vOper2%)", Message text=""
ENDIF
IF STRING VvOperation==Divide

Variable SET "vOperl=EXPR03(%VvOperl%/%vOper2%)", Message text=""
ENDIF

Message SHOW "Information" : "vOperl" (other parameters: x = -100, y = -100, Window title = The result is:,

Example (Plain Text):

<#> This example shows how to use form commands

<cmds>

<form_item>("FM1","This is a simple calculator for: + - * /*"TEXT","0","",1)
<form_item>("FM1","","LINE","0","",1)

<form_item>("FM1","Operand 1:","EDIT","0","vOper1",1)
<form_item>("FM1","Operation:","LIST","Plus|Minus|Multiply|Divide","vOperation",1)
<form_item>("FM1","Operand 2:","EDIT","0","vOper2",1)
<form_item>("FM1","","LINE","0","",1)

<form_item>("FM1","Continue ?","CHECK","YES","vAgain",1)

<label>("Ibl_Again")

<form_show>("FM1","Simple Calculator","calc.exe",0,500,0,,,1,1)
<if_str>("_vCanceled==1") <exitmacro> <endif>

<if_str>("vOperation==Plus")<#>
<varset>("vOperl=EXPR(%VOperl%+%vOper2%)","")
<endif>
<if_str>("vOperation==Minus")
<varset>("vOperl=EXPR(%VOperl%-%vOper2%)","")
<endif>
<if_str>("vOperation==Multiply")
<varset>("vOperl=EXPR(%VvOperl%*%vOper2%)","")
<endif>
<if_str>("vOperation==Divide")
<varset>("vOperl=EXPR03(%vOperl%/%vOper2%)","")
<endif>
<msg>(-100,-100,"vOperl","The result is:",1,,0)
<if_str>("vAgain==YES")
<goto>("Ibl_Again")
<endif>

Commands & Syntax > Commands > User Interaction >

Form FIELD - < form_item >() ... [Pro]

Form FIELD

<form_item>("Form identifier","Field name","Field type","Default value","Variable to sawe field value",Column)

Available in: Professional edition

This command adds a field to a form.

Parameter name

Parameter description

1 Form identifier

An identifier of the form (for example, "FM1") to which the item will be added.

2 Field name

The label that appears abowve the control in the form window.

3 Field type

Item type can be one of these:

"LIST" - selection from list of values defined as a string of values delimited by |
character. Example: ltem1|ltem2|item3
"EDIT" - edit control (single line)
"EDIT_ML5" - edit control (5 lines)
"EDIT_ML10" - edit control (10 lines)
"CHECK" - check box button

"LINE" - static line

"TEXT" - static text

"BUTTON" - button

"PWD" - password input box

"RADIO" - radio button

"EDIT_FILE" - file path
"EDIT_FOLDER" - folder path

4 Default value

Defines default the value (the value that initially appears in the form). Check
button (CHECK) and radio button (RADIO) have YES or NO values.

5 Variable to sawe field value

Variable that receives the data (value) the user enters. Check button (CHECK)
and radio button (RADIO) have YES or NO values. If the item type is "LIST"
then there is automatically created also variable that contains index of the item
selected. For example, if the variable to receive selected "LIST" value is
"wListValue" then - after the form is closed by user by clicking OK button -
there is also variable "WListValue_Inx" that contains index of the item selected.
The index numbers start from O.

6 Column

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Macro execution: ONLY COMMANDS

Form FIELD "This is a simple calculator for: + - * /" of type "Static text" (Default value=0, Variable to save field
value=, Form identifier=FM1)

Form FIELD "" of type "Separator” (Default value=0, Variable to save field value=, Form identifier=FM1)

Form FIELD "Operand 1:" of type "Text edit" (Default value=0, Variable to sawe field value=vOperl, Form
identifier=FM1)

Form FIELD "Operation:" of type "Drop down list" (Default value=Plus|Minus|Multiply|Divide, Variable to save
field value=vOperation, Form identifier=FM1)

Form FIELD "Operand 2:" of type "Text edit" (Default value=0, Variable to sawe field value=vOper2, Form
identifier=FM1)

Form FIELD "" of type "Separator” (Default value=0, Variable to save field value=, Form identifier=FM1)

Form FIELD "Continue ?" of type "Check box" (Default value=YES, Variable to save field value=vAgain, Form
identifier=FM1)

Jump TARGET "Ibl_Again”
Form OPEN "FM1", Window title="Simple Calculator"
IF STRING _\Canceled==

Macro EXIT
ENDIF
IF STRING vOperation==Plus

Variable SET "vOperl=EXPR(%VvOperl%+%vOper2%)", Message text=""
ENDIF
IF STRING vOperation==Minus

Variable SET "vOperl=EXPR(%VOperl%-%vOper2%)", Message text=""
ENDIF
IF STRING vOperation==Multiply

Variable SET "vOperl=EXPR(%VvOperl%*%vOper2%)", Message text=""
ENDIF
IF STRING VvOperation==Divide

Variable SET "vOperl=EXPR03(%VvOperl%/%vOper2%)", Message text=""
ENDIF

Message SHOW "Information" : "vOperl" (other parameters: x = -100, y = -100, Window title = The result is:,

Example (Plain Text):

<#> This example shows how to use form commands

<cmds>

<form_item>("FM1","This is a simple calculator for: + - * /*"TEXT","0","",1)
<form_item>("FM1","","LINE","0","",1)

<form_item>("FM1","Operand 1:","EDIT","0","vOper1",1)
<form_item>("FM1","Operation:","LIST","Plus|Minus|Multiply|Divide","vOperation",1)
<form_item>("FM1","Operand 2:","EDIT","0","vOper2",1)
<form_item>("FM1","","LINE","0","",1)

<form_item>("FM1","Continue ?","CHECK","YES","vAgain",1)

<label>("Ibl_Again")

<form_show>("FM1","Simple Calculator","calc.exe",0,500,0,,,1,1)
<if_str>("_vCanceled==1") <exitmacro> <endif>

<if_str>("vOperation==Plus")<#>
<varset>("vOperl=EXPR(%VOperl%+%vOper2%)","")
<endif>
<if_str>("vOperation==Minus")
<varset>("vOperl=EXPR(%VOperl%-%vOper2%)","")
<endif>
<if_str>("vOperation==Multiply")
<varset>("vOperl=EXPR(%VvOperl%*%vOper2%)","")
<endif>
<if_str>("vOperation==Divide")
<varset>("vOperl=EXPR03(%vOperl%/%vOper2%)","")
<endif>
<msg>(-100,-100,"vOperl","The result is:",1,,0)
<if_str>("vAgain==YES")
<goto>("Ibl_Again")
<endif>

Commands & Syntax > Commands > User Interaction >

Menu ADD ITEM - < menu_additem >() ... [Pro]

Menu ADD ITEM
<menu_additem>("ltem name","ltem identifier","Icon file",Icon index)
Available in: Professional edition

This command adds a new item to menu shown on the screen using "menu_show" command.

Parameter name Parameter description
1 Item name Name of the item as it shows in the menu. To add submenu items insert '." (dot)
to begin of the item name. To specify end of the submenu, insert just "' ltem. To
underline a specific character within the item, insert ‘&' character right before it.
2 Item identifier This is an optional parameter. If it is supplied, the "menu_show" command
returns item identifier rather than item name.
Icon file File containing an icon (.exe, .dll, .ico).
4 Icon index Position of the icon in the file.

Example (Macro Steps):

10

11

12

13

14

15

Macro execution: ONLY COMMANDS

Menu ADD ITEM "ltem 1", Item identifier=""

Menu ADD ITEM "ltem 2", Item identifier=""

Menu ADD ITEM "ltem 3", Item identifier=""

Menu ADD ITEM ".ltem 1 - 1", ltem identifier=""

Menu ADD ITEM ".ltem 1 - 2", Item identifier=""

Menu ADD ITEM ".ltem 1 - 3", ltem identifier=""

Menu ADD ITEM ".ltem 1 - 4", Item identifier=""

Menu ADD ITEM ".", Item identifier=""

Menu SHOW [x = -1, y = -1], Variable to keep selected item = vitem, Get item = Identifier, Add item

numbers (1-9, A-Z) = Yes

IF STRING vitem = NO

Message SHOW " : "Selected item is: %vitem%" (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

ENDIF

http://www.perfectkeyboard.com

Example (Plain Text):

<#> This macro will show how to use 'menu_additem'
<#> and 'menu_show' commands
<cmds>
<menu_additem>("ltem 1","","shell32.dIl",3)
<menu_additem>("ltem 2","","shell32.dll",4)
<menu_additem>("ltem 3","","shell32.dIl",5)
<menu_additem>(".ltem 1 - 1","","shell32.dIl",6)
<menu_additem>(".ltem 1 - 2","","shell32.dll",7)
<menu_additem>(".ltem 1 - 3","","shell32.dIl",8)
<menu_additem>(".ltem 1 - 4","","shell32.dll",9)
<menu_additem>(".")
<menu_show>(-1,-1,vitem,1,1)
<if_str>("vitem != NO")

<msg>(-100,-100,"Selected item is: %vitem%","Message",1)
<endif>

Commands & Syntax > Commands > User Interaction >

Menu SHOW - < menu_show >() ... [Pro]

Menu SHOW

<menu_show>(x,y,Variable to keep selected item,Get item,Add item numbers (1-9, A-2))

Available in: Professional edition

Opens menu that contains items previously added by "menu_additem” command.

Parameter name

Parameter description

1 X

X-coordinate of the menu position. If Xpos is 0 and Ypos is also 0, the
menu appears on caret position where text is entered. If Xpos is &€*1 and
Ypos is also &€"1, the menu appears on mouse cursor position.

Y-coordinate of the menu position. If Xpos is 0 and Ypos is also 0, the
menu appears on caret position where text is entered. If Xpos is &€*1 and
Ypos is also &€"1, the menu appears on mouse cursor position.

3 Variable to keep selected item

This variable receives the menu item user clicks on. If no menu item is
selected, the variable receives "NO" value.

4 Get item

If this parameter is 1, the Variable receives the item name as it was added
using "menu_additem” command. If this parameter is 0, the Variable
receives the order number of the item clicked.

5 Add item numbers (1-9, A-2)

Can be one of these values:

0 - default behavior.

1 - a prefix (1-9, a-z) is added before each macro name in the menu. This
allows user to run macro by pressing the prefix key.

Example (Macro Steps):

http://www.perfectkeyboard.com

2
3 Macro execution: ONLY COMMANDS
4 Menu ADD ITEM "White", Item identifier=""
5 Menu ADD ITEM "Gray", Item identifier=""
6 Menu ADD ITEM "Black", Item identifier=""
7 Menu ADD ITEM ".RGB", Item identifier=""
8 Menu ADD ITEM ".Red", Item identifier=""
° Menu ADD ITEM ".Green", Item identifier=""
10 " " . e
Menu ADD ITEM ".Blue", Item identifier=
11 "o : PP
Menu ADD ITEM ".", ltem identifier=
12 Menu SHOW [x = -1, y = -1], Variable to keep selected item = \Color, Get item = Identifier, Add item
numbers (1-9, A-Z) = Yes
13 -
IF STRING \Color = NO
14 Message SHOW " : "Selected item is: %vColor%" (other parameters: x = -100, y = -100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).
15

ENDIF

Example (Plain Text):

<#> This macro will show how to use 'menu_additem’
<#> and 'menu_show' commands
<cmds>
<menu_additem>("White")
<menu_additem>("Gray")
<menu_additem>("Black")
<menu_additem>(".RGB")
<menu_additem>(".Red")
<menu_additem>(".Green")
<menu_additem>(".Blue")
<menu_additem>(".")

<menu_show>(-1,-1,vColor,1,1)
<if_str>("vColor = NO")

<msg>(-100,-100,"Selected item is: %vColor%","Message",1)
<endif>

Commands & Syntax > Commands > User Interaction >

Menu of MACROS - < ma

Menu of MACROS
<macromenu>(x,y,"Macro group”,Option)
Available in: Professional edition

This command shows a menu consisting

cromenu >() ... [Pro]

from (enabled) macros found in the defined macro group. Clicking on a menu item

(macro) will cause that the macro is started.

Parameter name

Parameter description

1 X

X-coordinate of the menu position. If Xpos is 0 and Ypos is also 0, the menu
appears on caret position where text is entered. If Xpos is -1 and Ypos is also -1,
the menu appears on mouse cursor position. If Xpos is -2 and Ypos is also -2, the
menu appears in the center of the currently active window or in the center of
screen.

Y-coordinate of the menu position. If Xpos is 0 and Ypos is also 0, the menu
appears on caret position where text is entered. If Xpos is -1 and Ypos is also -1,
the menu appears on mouse cursor position. If Xpos is -2 and Ypos is also -2, the
menu appears in the center of the currently active window or in the center of
screen.

Macro group

Macros (name of the macro) from this group will show in the menu.

4 Option

Can be one of these values:

2 - default behavior.

3 - a prefix (1-9, a-z) is added before each macro name in the menu. This allows
user to run macro by pressing the prefix key.

The macro menu is by default sorted alphabetically. If the +4 are added to the
options abowe (so that the options number will be either 6 or 7) then the macro
menu is to sorted based on the "Order" column in the macro listing in main
window.

Example (Macro Steps):

Macro execution: ONLY CO

numbering

Example (Plain Text):

<#> This macro will open menu with mac
<#> 'New Macro Group' group
<cmds>

MMANDS

Menu of MACROS from group "New Macro Group", [x = -1, y = -1], Option = Sort alphabetically+Add item

ros from

<macromenu>(-1,-1,"New Macro Group",3)

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Window Manipulation

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Window Manipulation >

ACTIVATE - < actwin >() ... [Free]

<actwin>("Window",Match,Window state)
Available in: Free edition

Activates specified window. If the window doesn't exist a macro can be started (to open desired application or notify user,
for example).

Parameter name Parameter description
1 Window Window identifier in form of Window Identification Path (WIP) or HWND. It
identifies the window that is to be activated.
2 Match Takes effect only if a window is identified using WIP parameter. Can be one of
these values:

0 - match substrings in WIP
1 - match exact strings in WIP

3 Window state State of the window after the window is activated: 0 - Normal 1 - Minimized 2 -
Maximized 3 - Let the state unchanged

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOW "Notepad" Is Open (Match=Partial)

4 bring "Notepad" window to top (other parameters: Match = Partial, Window state =
Normal, %p4_name = no)

5 .

ELSE activate

6 Message SHOW " : "Notepad' is not opened!" (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

7

ENDIF

Example (Plain Text):

<#> This macro activates "Notepad" window if it is opened
<#>
<cmds>

<if_win>("Notepad","OPEN",0)
<actwin>("Notepad",0,0,"no")
<else>
<msg>(100,100,"Notepad' is not opened!","Message",1)
<endif>

http://www.perfectkeyboard.com

541

Commands & Syntax > Commands > Window Manipulation >

MOVE - < winmove >() ... [Pro]

<winmowve>("Window",Match,x,y)
Available in: Professional edition

The command moves specified window to defined position.

Parameter name Parameter description
1 Window Window identifier in form of Window Identification Path (WIP) or HWND. It
identifies the window that is to be mowed.
2 Match Takes effect only if a window is identified using WIP parameter. Can be one of
these values:

0 - match substrings in WIP
1 - match exact strings in WIP

X X-coordinate of desired window position

4 y Y-coordinate of desired window position

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOW "[*Notepad|Notepad|#0|#0]" Is Open (Match=Partial)

4 "[*Notepad|Notepad|#0|#0]" to [x=32, y=32]

5 ELSE activate

6 Message SHOW " : "Notepad' is not opened!" (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

7

ENDIF

Example (Plain Text):

<#> This macro moves "Notepad" window to position (32,32)
<#>
<cmds>
<if_win>("[*Notepad|Notepad[#0|#0]","OPEN",0)
<winmowe>("[*Notepad|Notepad[#0|#0]",0,32,32)
<else>
<msg>(100,100,"Notepad' is not opened!","Message",1)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Window Manipulation >

RESIZE - < winresize >() ... [Pro]

<winresize>("Window",Match,Width,Height)

Available in: Professional edition

The command resizes specified window.

Parameter name Parameter description

1 Window Window identifier in form of Window Identification Path (WIP) or HWND. It
identifies the window that is to be closed.

2 Match Takes effect only if a window is identified using WIP parameter. Can be one of
these values:
0 - match substrings in WIP
1 - match exact strings in WIP

Width Desired window's width
4 Height Desired window's height

Example (Macro Steps):

ELSE activate

Macro execution: ONLY COMMANDS

IF WINDOW "[*Notepad|Notepad|#0|#0]" Is Open (Match=Partial)

"[*Notepad|Notepad|#0|#0]" to [Width=300, Height=200]

Message SHOW " : "Notepad' is not opened!" (other parameters: x = 100, y = 100, Window title =

Message, Buttons = OK, Timeout (seconds) =, Always on top =).

ENDIF

Example (Plain Text):

<#> This macro resizes "Notepad" window to size 300x200

<H>
<cmds>

<if_win>("[*Notepad|Notepad[#0|#0]","OPEN",0)
<winresize>("[*Notepad|Notepad|#0|#0]",0,300,200)

<else>

<msg>(100,100,"Notepad' is not opened!","Message",1)

<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Window Manipulation >

Minimize All - < winminall > ... [Pro]

<winminall>
Available in: Professional edition

The command minimizes all windows.

Example (Macro Steps):

Example (Plain Text):

<#> This macro minimizes all windows
<#>
<winminall>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Window Manipulation >

CLOSE - < winclose >() ... [Pro]

<winclose>("Window",Match)
Available in: Professional edition

This command closes specified window. If the window is main application window this command causes the application is
closed.

Parameter name Parameter description
1 Window Window identifier in form of Window Identification Path (WIP) or HWND. It
identifies the window that is to be closed.
2 Match Takes effect only if a window is identified using WIP parameter. Can be one of
these values:

0 - match substrings in WIP
1 - match exact strings in WIP

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOW "[* - Notepad|Notepad|#566|#124]" Is Open (Match=Partial)

4 "[* - Notepad|Notepad|#566|#124]"

5 ELSE activate

6 Message SHOW " : "Notepad' is not opened!" (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

7

ENDIF

Example (Plain Text):

<#> This macro closes "Notepad" window
<#>
<cmds>

<if_win>("[* - Notepad|Notepad|#566[#124]","OPEN",0)
<winclose>("[* - Notepad|Notepad|#566|#124]",0)
<else>
<msg>(100,100,"Notepad' is not opened!","Message",1)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Window Manipulation >

CHANGE STATE - < winstate >() ... [Pro]

<winstate>("Window","Window state")
Available in: Professional edition

This command changes specified window state.

Parameter name Parameter description
1 Window Window identifier in form of Window Identification Path (WIP) or HWND. It
identifies the window that state is to be changed.
2 Window state Can be one of these values:
"MIN"
"RESTORE"
"MAX'
"ALWAYS_TOP"
"NOT_ALWAYS_TOP"
"HIDE"
"SHOW"

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOW "[* - Notepad|Notepad|#0[#119]" Is Open (Match=Partial)

4 Window=[* - Notepad|Notepad|#0|#119], Window state=Minimize

5 ELSE activate

6 Message SHOW " : "Notepad' is not opened!" (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

7

ENDIF

Example (Plain Text):

<#> This macro minimizes "Notepad" window
<cmds>
<if_win>("[* - Notepad|Notepad|#0|#119]","OPEN",0)
<winstate>("[* - Notepad|Notepad|#0|#119]","MIN")
<else>
<msg>(100,100,"Notepad' is not opened!","Message",1)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Window Manipulation >

ENUMERATE - < win_enumerate >() ... [Pro]

<win_enumerate>(Variable array for enumerated items,Variable array size,Match)

Available in: Professional edition

This command enumerates windows.

Parameter name

Parameter description

1 Variable array for enumerated items Variable (array) that receives window title of each visible window.
2 Variable array size Number of visible windows saved in VarWindows variable.
3 Match 0 - enumerate only visible windows and insert window titles to

VarWindows variable

1 - enumerate both visible and hidden windows and insert window
titles to VarWindows variable

2 - enumerate only \visible windows and insert HWND to VarwWindows
variable

3 - enumerate both visible and hidden windows and insert HWND to
VarWindows variable

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 "Only visible windows, get window titles", Variable array for enumerated items = WVin,
Variable array size = viNum

4 Loop BEGIN Repeat = viNum

5 Message SHOW " : "%wWVin[_vLoopCounter0]%" (other parameters: x = -100, y = -100, Window title =

Message, Buttons = OK, Timeout (seconds) =, Always on top =).
6

Loop END

Example (Plain Text):

<#> This macro enumerates opened windows
<H#>
<cmds>

<win_enumerate>(WVin,yNum,0)
<begloop>(vNum)

<msg>(-100,-100,"%WVin[_\.oopCounter0]%","Message",1)

<endloop>

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Window Manipulation >

INFO - < wininfo >() ... [Pro]

<wininfo>("Window","Unused","Match")
Available in: Professional edition

This command retrieves information about required window. After the command is processed, required information is saved
in following system variables:

_WVinRectX1 - X position of upper left corner of the window in screen coordinates
_WVinRectY1 - Y position of upper left corner of the window in screen coordinates
_WVinRectX2 - X position of lower right corner of the window in screen coordinates
_WVinRectY2 - Y position of lower right corner of the window in screen coordinates
_WVinWdt - window width

_WVinHgt - window height

_WVinTitle - window title

_WVinClass - window class

_WVinState - window state (MIN, RESTORE, MAX, HIDDEN)

_WVinActive - YES, if window is active (on top receiving keyboard input), otherwise NO
_WVIinHWND - HWND of the window

Parameter name Parameter description
1 Window Window identifier in form of Window Identification Path or HWND. It identifies
window the information is to be retrieved from.
2 Unused Must be empty.
3 Match Takes effect only if a window is identified using WIP parameter. Can be one of
these values:

0 - match substrings in WIP
1 - match exact strings in WIP

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOW "Notepad" Is Open (Match=Partial)

4 retrieve information about window "Notepad" (Match = Partial)

5 Message SHOW " : "Window information: %_wWVinTitle% %_wWVinClass% %_WVinActive%
%_WVinState%" (other parameters: x = -100, y = -100, Window title = Message, Buttons = OK, Timeout
(seconds) =, Always on top =).

6 .

ELSE activate

7 Message SHOW " : "'Notepad' is not opened!" (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

8

ENDIF

Example (Plain Text):

http://www.perfectkeyboard.com

<#> This macro retrieves information about "Notepad" window

<#>

<cmds>

<if_win>("Notepad","OPEN",0)
<wininfo>("Notepad","",0)
<msg>(-100,-100,"Window information:

%_WVinTitle%

%_WVinClass%

%_WVinActive%

%_WVinState%","Message",1)

<else>

<msg>(100,100,"Notepad' is not opened!","Message",1)
<endif>

Commands & Syntax > Commands > Window Manipulation >

Image FIND in WINDOW - < win_findimage >() ... [Pro]

<win_findimage>("Window",Match,"Image file",Start search X Start search Y,Variable for image found X, Variable for image
found Y,Image match,Search area width,Search area height)
Available in: Professional edition

This command searches for defined image(s) within the given window. If the image is found in the window the command
sets supplied coordinate variables. If multiple image files are defined using wildcards then [x,y] position variables for each
image are created for each image file. For example, ifimage files are defined using "c:\find_images*.bmp" and there are
"Button.bmp" and "Title.bmp" image files in the "c:\find_images" folder then variables "button.bmp_x" and "button.bmp_y"
variables that defines position of the "Button.bmp" image on the screen is created. The same for "title.bmp" file there are
"title.bmp_x" and "title.bmp_y" variable created. Using such variables it is possible to determine what images were found
and what are their position on the screen. Image file names are always conwerted to lowercase.

Important:

It is application specific how the window content is drawn within its window and in some cases what is visible
on the computer screen as a one image is actually composed by multiple pieces. For this reason, use
<display_findimage> command if thiscommand is not working with a particular application.

The bitmap file the command is finding must be captured with the same DPI (or zoom in web browser) as the
content presented on the screen. These are typical problems why the command fails:
1. The bitmap file is captured on a monitor with higher/lower DPI than the monitor where the command is

finding the image. To prevent this problem always capture the image on the same monitor where the command
is executed.

2. The bitmap file is captured in web browser with different zoom setting than the current zoom. To prevent this
use the same web browser and the same zoom setings when capturing image and running the macro.

http://www.perfectkeyboard.com

Parameter name Parameter description

1 Window Window Identification Path or HWND of the window where the image is to be
searched in. HWND is a unique handle Windows internally uses to identify
each window. The HWND can be retrieved by some commands (,) or is
provided by some system variables (_vKeybdFocusWindow_HWND,
_VActiveWindow_HWND, _vActiveWindowPrev_HWND).

2 Match Takes effect only if a window title is used as WinTitleOrHWND parameter. Can
be one of these values:

0 - WinTitle can be substring of a window title
1 - WinTitle must exactly match a window title

3 Image file (Full) path to the image file. This is a bitmap image that is captured using
"Capture..." feature in the "win_findimage" command editor. Multiple image
files are supported using wildcards (* or ?).

4 Start search X X-coordinate where to start searching in the window.

5 Start search Y Y-coordinate where to start searching in the window.

6 Variable for image found X It is possible to scope searching to an area smaller than the whole window.
This attribute specifies the width of the searching area. If this parameter is set
to "0" then the whole window width is being searched.

7 Variable for image found Y It is possible to scope searching to an area smaller than the whole window.
This attribute specifies the height of the searching area. If this parameter is
set to "0" then the whole window height is being searched.

8 Image match Name of the variable that receives X-coordinate of the position of the image in
the window. If the image is not found then the variable receives "-1".

9 Search area width Name of the variable that receives Y-coordinate of the position of the image in
the window. If the image is not found then the variable receives "-1".

10 Search area height If 0 then the image does not has to exactly match, a certain lewvel of tolerance
is allowed.

If 1 then the image has to exactly match.

Example (Macro Steps):

2 Key Enter

3 Macro execution: ONLY COMMANDS

4 "[Calculator|CalcFrame|#25|#543]" (Match = Partial, Image file =
C:\Temp\sin.bmp, Start search X= 0, Start search Y = 0, Variable for image found X = vSinBtnX, Variable for
image found Y = vSinBtnY, Image match = Tolerant, Search area width = 0, Search area height = 0)

5 .
IF VSinBtnX > -1

6 bring "[Calculator|CalcFrame|#0]#0]" window to top (other parameters: Match =

Partial, Window state = Normal, %p4_name = no)

7 Mouse COORDINATES are now RELATIVE to active WINDOW

8 Mouse MOVE position [x=vSinBtnX, y=vSinBtnY]

9 Mouse BUTTON: LEFT button DOWN

10 Mouse BUTTON: LEFT button UP

11

ENDIF

Example (Plain Text):

<#> This macro finds a "sin" button in Calculator window and clicks on it
<#>

<cmds>
<win_findimage>("[Calculator|CalcFrame[#25[#543]",0,"C:\Temp\sin.bmp",0,0,vSinBtnX,vSinBtnY,0,0,0)
<if>("vSinBtnX > -1")

<actwin>("[Calculator|CalcFramel#0|#0]",0,0,"no")
<mousemove_relative_win>
<mm>(VSinBtnX,vSinBtnY)<mlbd><mlbu>

<endif>

Commands & Syntax > Commands > Window Manipulation >

Image CAPTURE from WINDOW - < win_captureimage >() ... [Pro]

<win_captureimage>("Window",Match,x,y,Width,Height,"Image file")
Available in: Professional edition

This command captures an image in defined window.
Important:
It is application specific how the window content is drawn within its window and in some cases what is visible

on the computer screen as a one image is actually composed by multiple pieces. For this reason, use
<display_captureimage> command if thiscommand is not working with a particular application.

Parameter name Parameter description
1 Window Window identifier in form of Window Identification Path or HWND. It identifies the
window where an image is to be captured.
2 Match Takes effect only if a window is identified using WIP parameter. Can be one of
these values:

0 - match substrings in WIP
1 - match exact strings in WIP

3 X X coordination of the upper left corner of the area to be captured.

4 y Y coordination of the upper left corner of the area to be captured.

5 Width Width of the area to be captured. Ifit is set to "0" then whole window is captured.
6 Height Height of the area to be captured.

7 Image file Name (or full path) of the resulting image file.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 Window = "_VvActiveWindow HWND", Match = "Partial", x = "0", y
="0", Width = "0", Height = "0", Image file = "% _\Folder_Personal%\Windowlmage.bmp"

4 Message SHOW "Question" : "Do you want to see the captured image now?" (other parameters: x = -100, y =
-100, Window title = Message, Buttons = Yes and No, Timeout (seconds) = 0, Always on top =).

5 IF _vMsgButton==YES

6 File OPEN open file "%_vFolder_Personal%\Windowlmage.bmp" in system default viewer.

7

ENDIF

Example (Plain Text):

<#> This macro shows how to capture picture of an active window
<cmds>

<win captureimage>(" vActiveWindow HWND",0,0,0,0,0,"% wFolder Personal%\Windowlmage.bmp")

http://www.perfectkeyboard.com

<msg>(-100,-100,"Do you want to see the captured image now?","Message",2,0,1)

<if>("_wMsgButton==YES")
<fileopen>("%_wvolder_Personal%\Windowlmage.bmp",0)
<endif>

Commands & Syntax > Commands > Window Manipulation >

APPLICATION - < actapp >() ... [Free]

<actapp>("Window")
Available in: Free edition

Activates application the specified window belongs to. The command does not change what window in the application is
active - the last active application's window remains active. This is the difference to what command does.

Parameter name Parameter description

1 Window Window identifier in form of Window Identification Path (WIP) or HWND. It
identifies window of the application to be activated.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 IF WINDOW "[*|Notepad|#0J#0]" Is Open (Match=Patrtial)

4 activate [*|Notepad|#0|#0]

5 ELSE activate

6 Message SHOW " : "Notepad' is not opened!" (other parameters: x = 100, y = 100, Window title =
Message, Buttons = OK, Timeout (seconds) =, Always on top =).

7

ENDIF

Example (Plain Text):

<#> This macro activates "Notepad" application if it is opened
<#>
<cmds>

<if_win>("[*|Notepad|#0[#0]","OPEN",0)
<actapp>("[*|Notepad|#0]#0]")
<else>
<msg>(100,100,"Notepad' is not opened!","Message",1)
<endif>

http://www.perfectkeyboard.com

Commands & Syntax > Commands >

Xml Parser

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Xml Parser >

File Open - < xml_file_open >() ... [Pro]

<xml_file_open>("File path",File handle variable,Root element handle variable,"Password")

Available in: Professional edition

This command opens an Xml file and parses it. If the file content is not valid Xml then the open command fails. The
command returns file handle and root element handle (to variables passed as parameters) needed for other operarions.

Parameter name

Parameter description

1 File path Xml file path.

2 File handle variable Xml file handle - a unique number that is used as parameter to other
commands (for eaxample, to close the Xml file).

3 Root element handle variable Xml root element handle - a unique number that identifies the root element of
the Xml file. It is used as input to other commands (for example, to get child
elements and traverse the Xml file.

4 Password Password used to decrypt the data. The password must be the same that

was previously used to encrypt data (in 'xml_file_create'command). If
incorrect password is provided then commands that reads data from the
XML file (‘xml_element_get', 'xml_attribute_get' or 'xml_findtext') fails. Leave
the parameter empty if the data are not encrypted.

Example (Macro Steps):

File path = "c:\myXmlFileLocation\file.xml", File handle variable = "vXmIDoc", Root element

1
2 Macro execution: ONLY COMMANDS
3
handle variable = "vXmlIRoot", Password = ""
4
5

"vXmlDoc"

Example (Plain Text):

<#>This macro shows how to open and close an Xml file

<cmds>

<xml_file_open>("c:\myXmlFileLocation\file.xml",vXmIDoc,vXmIRoot)

<#> Do something useful with the Xml file...
<xml_file_close>(vXmIDoc)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Xml Parser >

File Save - < xml_file_save >() ... [Pro]

<xml_file_sawe>(File handle variable,"File path")
Available in: Professional edition

This command saves an Xml file to disk.

Parameter name Parameter description
1 File handle variable Xml file handle - an Xml file identifier provided from "open xml" or "create xml"
commands.
2 File path Name (full path) of the file.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 vXmlIDoc, Root element handle variable = vXmIRoot,Password =
4 "vXmlIDoc" (File path = "c:\temp\newFile.xml")

5

"vXmlIDoc"

Example (Plain Text):

<#>This macro shows how to save a created Xml file
<cmds>

<xml_file_create>(vXmlIDoc,vXmIRoot)
<xml_file_sawve>(vXmiIDoc,"c:\temp\newFile.xml")
<xml_file_close>(vXmIDoc)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Xml Parser >

Element Get - < xml_element_get >() ... [Pro]

<xml_element_get>(Element handle variable,What,Variable receiving result)

Available in: Professional edition

This command provides access to an Xml file element information such as name, text, child elements, etc.

Parameter name

Parameter description

1 Element handle variable

Element handle - variable that identifies the element to get information from.

2 What

Type of information to retrieve:

SIBLING_NEXT - identifier of next sibling element.

SIBLING_PREYV - identifier of previous sibling element.

CHILD_FIRST - identifier of first child element.

CHILD_LAST - identifier of last child element.

TEXT - the element text.

NAME - the element name.

PATH - the element path in the XML from root. For example,
"contacts\contact\address\street" for the "street" element that is child of the
"address" element...

3 Variable receiving result

Name of variable that will receive retrieved information.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Macro execution: ONLY COMMANDS
vXmlIDoc, Root element handle variable = vXmlRoot,Password =

(File handle variable = "vXmIDoc", Name = "elem1", Text = "This is elem1 text",
Element handle variable = "vElem1")

(Element handle variable = "vElem1", Attribute name = "al", Value = "Hello")
"vXmlRoot" (What = CHILD_FIRST, Input = vElem1)
"vXmlDoc" (File path = "% TEMP%\test.xml")

"vXmlDoc"

File path = "% TEMP%\test.xml", File handle variable = "v2XmIDoc", Root element handle
variable = "v2XmlRoot", Password = ""

IF STRING %Vv2XmIDoc%==%_VStrEmpty%

Message SHOW "Information" : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2XmlIRoot" (What = CHILD_FIRST, Variable receiving result = \2ZElemChild1)
IF STRING %V2ElemChild1%==%_VStrEmpty%

Message SHOW "Information" : "Xml element not found." (other parameters: x = -100, y = -100, Window
title = Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2ElemChild1" (What = NAME, Variable receiving result = V2ElemName)
"V2ElemChild1" (What = TEXT, Variable receiving result = \V2ZElemText)

(Element handle variable = "%\2ElemChild1%", Attribute name = "al", Variable for result =
"V2A1AttributeValue")

(Element handle variable = "v2XmlIDoc", Path = "root\elem1", Element handle
variable = "V2ElemNavigated")

IF STRING %\V2ElemNavigated%==%_VStrEmpty%

Message SHOW "Information™ : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF

"v2XmlIDoc"

Example (Plain Text):

<#>This macro shows how to work with Xml file content
<#>Create XML file with some simple content and sawe it to disk
<cmds>

<xml_file_create>(vXmlIDoc,vXmIRoot)
<xml_element_create>(vXmlIDoc,elem1,This is elem1 text,vElem1)
<xml_attribute_set>(vElem1,al,Hello)
<xml_element_set>(vXmlRoot,CHILD_FIRST,vElem1)
<xml_file_save>(vXmIDoc,"% TEMP%!\test.xml")
<xml_file_close>(vXmIDoc)<#>Open the XML file previously created and explore the contet
<xml_file_open>("%TEMP%\test.xml",v2XmIDoc,v2XmIRoot)
<if_str>("%v2XmIDoc%==%_VStrEmpty%")

<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_element_get>(v2XmlIRoot, CHILD_FIRST,v2ElemChild1)
<if_str>("%Vv2ElemChild1%==%_VvStrEmpty%")
<msg>(-100,-100,"Xml element not found.","Error",1,0,0,0)

<endif>

<xml_element_get>(V2ElemChild1,NAME,v2ElemName)
<xml_element_get>(V2ElemChild1, TEXT,v2ElemText)
<xml_attribute_get>(%v2ElemChild1%,al,2A1AttributeValue)
<xml_element_navigate>(v2XmlIDoc,"root\elem1",v2ElemNavigated)
<if_str>("%Vv2ElemNavigated%==%_VStrEmpty%")
<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_file_close>(v2XmIDoc)

Commands & Syntax > Commands > Xml Parser >

Attribute Get - < xml_attribute_get >() ... [Pro]

<xml_attribute_get>(Element handle variable,Attribute name,Variable for result)
Available in: Professional edition

This command retrieves given Xml file element attribute value.

Parameter name Parameter description
1 Element handle variable Element handle - variable that identifies the element.
2 Attribute name Attribute name.
3 Variable for result Name of variable that will receive attribute value. If the attribute is not found then
the value is an empty string.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Macro execution: ONLY COMMANDS
vXmlIDoc, Root element handle variable = vXmlRoot,Password =

(File handle variable = "vXmIDoc", Name = "elem1", Text = "This is elem1 text",
Element handle variable = "vElem1")

(Element handle variable = "vElem1", Attribute name = "al", Value = "Hello")
"vXmlRoot" (What = CHILD_FIRST, Input = vElem1)
"vXmlDoc" (File path = "% TEMP%\test.xml")

"vXmlDoc"

File path = "% TEMP%\test.xml", File handle variable = "v2XmIDoc", Root element handle
variable = "v2XmlRoot", Password = ""

IF STRING %Vv2XmIDoc%==%_VStrEmpty%

Message SHOW "Information" : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2XmlIRoot" (What = CHILD_FIRST, Variable receiving result = \2ZElemChild1)
IF STRING %V2ElemChild1%==%_VStrEmpty%

Message SHOW "Information" : "Xml element not found." (other parameters: x = -100, y = -100, Window
title = Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2ElemChild1" (What = NAME, Variable receiving result = V2ElemName)
"V2ElemChild1" (What = TEXT, Variable receiving result = \V2ZElemText)

(Element handle variable = "%\2ElemChild1%", Attribute name = "al", Variable for result =
"V2A1AttributeValue")

(Element handle variable = "v2XmlIDoc", Path = "root\elem1", Element handle
variable = "V2ElemNavigated")

IF STRING %\V2ElemNavigated%==%_VStrEmpty%

Message SHOW "Information™ : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF

"v2XmlIDoc"

Example (Plain Text):

<#>This macro shows how to work with Xml file content
<#>Create XML file with some simple content and sawe it to disk
<cmds>

<xml_file_create>(vXmlIDoc,vXmIRoot)
<xml_element_create>(vXmlIDoc,elem1,This is elem1 text,vElem1)
<xml_attribute_set>(vElem1,al,Hello)
<xml_element_set>(vXmlRoot,CHILD_FIRST,vElem1)
<xml_file_save>(vXmIDoc,"% TEMP%!\test.xml")
<xml_file_close>(vXmIDoc)<#>Open the XML file previously created and explore the contet
<xml_file_open>("%TEMP%\test.xml",v2XmIDoc,v2XmIRoot)
<if_str>("%v2XmIDoc%==%_VStrEmpty%")

<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_element_get>(v2XmlIRoot, CHILD_FIRST,v2ElemChild1)
<if_str>("%Vv2ElemChild1%==%_VvStrEmpty%")
<msg>(-100,-100,"Xml element not found.","Error",1,0,0,0)

<endif>

<xml_element_get>(V2ElemChild1,NAME,v2ElemName)
<xml_element_get>(V2ElemChild1, TEXT,v2ElemText)
<xml_attribute_get>(%v2ElemChild1%,al,2A1AttributeValue)
<xml_element_navigate>(v2XmlIDoc,"root\elem1",v2ElemNavigated)
<if_str>("%Vv2ElemNavigated%==%_VStrEmpty%")
<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_file_close>(v2XmIDoc)

Commands & Syntax > Commands > Xml Parser >

File Close - < xml_file_close >() ... [Pro]

<xml_file_close>(File handle variable)
Available in: Professional edition

This command closes an opened (or created) Xml file.

Parameter name Parameter description
1 File handle variable Xml file handle - an Xml file identifier retrieved from "open xml" or "create xml"
commands.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 vXmlIDoc, Root element handle variable = vXmIRoot,Password =
4 "vXmlIDoc" (File path = "c:\temp\newFile.xml")

5

"vXmlIDoc"

Example (Plain Text):

<#>This macro shows how to close Xml file
<cmds>

<xml_file_create>(vXmlIDoc,vXmIRoot)
<xml_file_sawve>(vXmiIDoc,"c:\temp\newFile.xml")
<xml_file_close>(vXmIDoc)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Xml Parser >

Navigate to Element - < xml_element_navigate >() ... [Pro]

<xml_element_navigate>(Element handle variable,"Path",Element handle variable)

Available in: Professional edition

This command navigates to an Xml file element.

Parameter name Parameter description

1 Element handle variable Starting element handle - variable that identifies the element where the path
starts.

2 Path Path to element to navigate to in form "element2\element3\...\elementX' where
"element2" is the first child of the starting elemenet, "elemenet3" is the first child
of "element2”, etc.

3 Element handle variable Name of variable that will receive handle of the element from the path
("elementX").

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Macro execution: ONLY COMMANDS
vXmlIDoc, Root element handle variable = vXmlRoot,Password =

(File handle variable = "vXmIDoc", Name = "elem1", Text = "This is elem1 text",
Element handle variable = "vElem1")

(Element handle variable = "vElem1", Attribute name = "al", Value = "Hello")
"vXmlRoot" (What = CHILD_FIRST, Input = vElem1)
"vXmlDoc" (File path = "% TEMP%\test.xml")

"vXmlDoc"

File path = "% TEMP%\test.xml", File handle variable = "v2XmIDoc", Root element handle
variable = "v2XmlRoot", Password = ""

IF STRING %Vv2XmIDoc%==%_VStrEmpty%

Message SHOW "Information" : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2XmlIRoot" (What = CHILD_FIRST, Variable receiving result = \2ZElemChild1)
IF STRING %V2ElemChild1%==%_VStrEmpty%

Message SHOW "Information" : "Xml element not found." (other parameters: x = -100, y = -100, Window
title = Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2ElemChild1" (What = NAME, Variable receiving result = V2ElemName)
"V2ElemChild1" (What = TEXT, Variable receiving result = \V2ZElemText)

(Element handle variable = "%\2ElemChild1%", Attribute name = "al", Variable for result =
"V2A1AttributeValue")

(Element handle variable = "%w2XmIRoot%", Path = "elem1”, Element handle
variable = "V2ElemNavigated")

(Element handle variable = "%\V2ElemNavigated%", Attribute name = "al", Variable for
result = "vNavigatedValue")

IF STRING %wNavigatedValue%!=Hello

Message SHOW "Information" : "Navigation to element failed. %wWavigatedValue%" (other parameters: x =
-100, y = -100, Window title = Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

[l N Y B

Example (Plain Text):

<#>This macro shows how to work with Xml file content
<#>Create XML file with some simple content and sawe it to disk
<cmds>

<xml_file_create>(vXmlIDoc,vXmIRoot)
<xml_element_create>(vXmlIDoc,elem1,This is elem1 text,vElem1)
<xml_attribute_set>(vElem1,al,Hello)
<xml_element_set>(vXmlRoot,CHILD_FIRST,vElem1)
<xml_file_save>(vXmIDoc,"% TEMP%!\test.xml")
<xml_file_close>(vXmIDoc)<#>Open the XML file previously created and explore the contet
<xml_file_open>("%TEMP%\test.xml",v2XmIDoc,v2XmIRoot)
<if_str>("%v2XmIDoc%==%_VStrEmpty%")

<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_element_get>(v2XmlIRoot, CHILD_FIRST,v2ElemChild1)
<if_str>("%Vv2ElemChild1%==%_VvStrEmpty%")
<msg>(-100,-100,"Xml element not found.","Error",1,0,0,0)

<endif>

<xml_element_get>(V2ElemChild1,NAME,v2ElemName)
<xml_element_get>(V2ElemChild1, TEXT,v2ElemText)
<xml_attribute_get>(%v2ElemChild1%,al,2A1AttributeValue)
<xml_element_navigate>(%v2XmIRoot%,"elem1" v2ElemNavigated)
<xml_attribute_get>(%Vv2ElemNavigated%,al,vNavigatedValue)
<if_str>("%wvNavigatedValue%!=Hello")
<msg>(-100,-100,"Navigation to element failed.
%WwNavigatedValue%","Error*,1,0,0,0)

<endif>

<xml_file_close>(v2XmIDoc)

Commands & Syntax > Commands > Xml Parser >

File Create - < xml_file_create >() ... [Pro]

<xml_file_create>(File handle variable,Root element handle variable,"Password")
Available in: Professional edition

This command creates a new Xml file. A "xml file save" command must be used in order to persist the Xml file on disk (or
other media). The command returns file handle and root element handle (to variables passed as parameters) needed for other
operarions.

Parameter name Parameter description

1 File handle variable Xml file handle - a unique number that is used as parameter to other
commands (for eaxample, to save or close the Xml file).

2 Root element handle variable Xml root element handle - a unique number that identifies the root element of
the Xml file. It is used as input to other commands (for example, to get set
child elements).

3 Password Password used to encrypt the data. The password is used to encrypt the
data that are set in XML file using 'xml_element_create', 'xml_element_set',
and 'xml_attribute_set' commands. Leave the parameter empty (default
value) if no encryption is required.

Example (Macro Steps):

1

2 Macro execution: ONLY COMMANDS

3 vXmlIDoc, Root element handle variable = vXmIRoot,Password =
4 "vXmlIDoc" (File path = "c:\temp\newFile.xmlI")

5

"vXmlIDoc"

Example (Plain Text):

<#>This macro shows how to create a new empty Xml file
<cmds>

<xml_file_create>(vXmlIDoc,vXmIRoot)
<xml_file_sawve>(vXmiIDoc,"c:\temp\newFile.xml")
<xml_file_close>(vXmIDoc)

http://www.perfectkeyboard.com

Commands & Syntax > Commands > Xml Parser >

Element Set - < xml_element_set >() ... [Pro]

<xml_element_set>(Element handle variable,What,Input)
Available in: Professional edition

This command allows to set some element properties such as element name or text as well as it allows to add a new child
element.

Parameter name Parameter description
1 Element handle variable Variable that identifies the element.
2 What What property to set:

TEXT - element text defined by "Input" parameter is set.

NAME - element name defined by "Input" parameter is set.

CHILD_FIRST - element handle provided in "Input" parameter is set as the first
child element.

CHILD_LAST - element handle provided in "Input" parameter is set as the last
child element.

3 Input The meaning of this parameter dependes on the previous parameter.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Macro execution: ONLY COMMANDS
vXmlIDoc, Root element handle variable = vXmlRoot,Password =

(File handle variable = "vXmIDoc", Name = "elem1", Text = "This is elem1 text",
Element handle variable = "vElem1")

(Element handle variable = "vElem1", Attribute name = "al", Value = "Hello")
"vXmlRoot" (What = CHILD_FIRST, Input = vElem1)
"vXmlDoc" (File path = "% TEMP%\test.xml")

"vXmlDoc"

File path = "% TEMP%\test.xml", File handle variable = "v2XmIDoc", Root element handle
variable = "v2XmlRoot", Password = ""

IF STRING %Vv2XmIDoc%==%_VStrEmpty%

Message SHOW "Information" : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2XmlIRoot" (What = CHILD_FIRST, Variable receiving result = \2ZElemChild1)
IF STRING %V2ElemChild1%==%_VStrEmpty%

Message SHOW "Information" : "Xml element not found." (other parameters: x = -100, y = -100, Window
title = Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2ElemChild1" (What = NAME, Variable receiving result = V2ElemName)
"V2ElemChild1" (What = TEXT, Variable receiving result = \V2ZElemText)

(Element handle variable = "%\2ElemChild1%", Attribute name = "al", Variable for result =
"V2A1AttributeValue")

(Element handle variable = "v2XmlIDoc", Path = "root\elem1", Element handle
variable = "V2ElemNavigated")

IF STRING %\V2ElemNavigated%==%_VStrEmpty%

Message SHOW "Information™ : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF

"v2XmlIDoc"

Example (Plain Text):

<#>This macro shows how to work with Xml file content
<#>Create XML file with some simple content and sawe it to disk
<cmds>

<xml_file_create>(vXmlIDoc,vXmIRoot)
<xml_element_create>(vXmlIDoc,elem1,This is elem1 text,vElem1)
<xml_attribute_set>(vElem1,al,Hello)
<xml_element_set>(vXmlRoot,CHILD_FIRST,vElem1)
<xml_file_save>(vXmIDoc,"% TEMP%!\test.xml")
<xml_file_close>(vXmIDoc)<#>Open the XML file previously created and explore the contet
<xml_file_open>("%TEMP%\test.xml",v2XmIDoc,v2XmIRoot)
<if_str>("%v2XmIDoc%==%_VStrEmpty%")

<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_element_get>(v2XmlIRoot, CHILD_FIRST,v2ElemChild1)
<if_str>("%Vv2ElemChild1%==%_VvStrEmpty%")
<msg>(-100,-100,"Xml element not found.","Error",1,0,0,0)

<endif>

<xml_element_get>(V2ElemChild1,NAME,v2ElemName)
<xml_element_get>(V2ElemChild1, TEXT,v2ElemText)
<xml_attribute_get>(%v2ElemChild1%,al,2A1AttributeValue)
<xml_element_navigate>(v2XmlIDoc,"root\elem1",v2ElemNavigated)
<if_str>("%Vv2ElemNavigated%==%_VStrEmpty%")
<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_file_close>(v2XmIDoc)

Commands & Syntax > Commands > Xml Parser >

Attribute Set - < xml_attribute_set >() ... [Pro]

<xml_attribute_set>(Element handle variable,Attribute name,Value)
Available in: Professional edition

This command allows to set an attribute value for given Xml file element.

Parameter name Parameter description
1 Element handle variable Variable that identifies the element.
2 Attribute name Attribute name. If the attribute does not exist then it is added.
3 Value value to set.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Macro execution: ONLY COMMANDS
vXmlIDoc, Root element handle variable = vXmlRoot,Password =

(File handle variable = "vXmIDoc", Name = "elem1", Text = "This is elem1 text",
Element handle variable = "vElem1")

(Element handle variable = "vElem1", Attribute name = "al", Value = "Hello")
"vXmlRoot" (What = CHILD_FIRST, Input = vElem1)
"vXmlDoc" (File path = "% TEMP%\test.xml")

"vXmlDoc"

File path = "% TEMP%\test.xml", File handle variable = "v2XmIDoc", Root element handle
variable = "v2XmlRoot", Password = ""

IF STRING %Vv2XmIDoc%==%_VStrEmpty%

Message SHOW "Information" : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2XmlIRoot" (What = CHILD_FIRST, Variable receiving result = \2ZElemChild1)
IF STRING %V2ElemChild1%==%_VStrEmpty%

Message SHOW "Information" : "Xml element not found." (other parameters: x = -100, y = -100, Window
title = Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2ElemChild1" (What = NAME, Variable receiving result = V2ElemName)
"V2ElemChild1" (What = TEXT, Variable receiving result = \V2ZElemText)

(Element handle variable = "%\2ElemChild1%", Attribute name = "al", Variable for result =
"V2A1AttributeValue")

(Element handle variable = "v2XmlIDoc", Path = "root\elem1", Element handle
variable = "V2ElemNavigated")

IF STRING %\V2ElemNavigated%==%_VStrEmpty%

Message SHOW "Information™ : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF

"v2XmlIDoc"

Example (Plain Text):

<#>This macro shows how to work with Xml file content
<#>Create XML file with some simple content and sawe it to disk
<cmds>

<xml_file_create>(vXmlIDoc,vXmIRoot)
<xml_element_create>(vXmlIDoc,elem1,This is elem1 text,vElem1)
<xml_attribute_set>(vElem1,al,Hello)
<xml_element_set>(vXmlRoot,CHILD_FIRST,vElem1)
<xml_file_save>(vXmIDoc,"% TEMP%!\test.xml")
<xml_file_close>(vXmIDoc)<#>Open the XML file previously created and explore the contet
<xml_file_open>("%TEMP%\test.xml",v2XmIDoc,v2XmIRoot)
<if_str>("%v2XmIDoc%==%_VStrEmpty%")

<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_element_get>(v2XmlIRoot, CHILD_FIRST,v2ElemChild1)
<if_str>("%Vv2ElemChild1%==%_VvStrEmpty%")
<msg>(-100,-100,"Xml element not found.","Error",1,0,0,0)

<endif>

<xml_element_get>(V2ElemChild1,NAME,v2ElemName)
<xml_element_get>(V2ElemChild1, TEXT,v2ElemText)
<xml_attribute_get>(%v2ElemChild1%,al,2A1AttributeValue)
<xml_element_navigate>(v2XmlIDoc,"root\elem1",v2ElemNavigated)
<if_str>("%Vv2ElemNavigated%==%_VStrEmpty%")
<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_file_close>(v2XmIDoc)

Commands & Syntax > Commands > Xml Parser >

Element Create - < xml_element_create >() ... [Pro]

<xml_element_create>(File handle variable,Name, Text,Element handle variable)
Available in: Professional edition

This command creates a new Xml file element. Once the new element is created it can be added to Xml file using "element
set" command.

Parameter name Parameter description
1 File handle variable Xml file handle - an Xml file identifier provided from "open xml" or "create xml"
commands.
2 Name Name of the new element.
3 Text The new element text.
4 Element handle variable Name of variable that will receive the newly created element handle.

Example (Macro Steps):

http://www.perfectkeyboard.com

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Macro execution: ONLY COMMANDS
vXmlIDoc, Root element handle variable = vXmlRoot,Password =

(File handle variable = "vXmIDoc", Name = "elem1", Text = "This is elem1 text",
Element handle variable = "vElem1")

(Element handle variable = "vElem1", Attribute name = "al", Value = "Hello")
"vXmlRoot" (What = CHILD_FIRST, Input = vElem1)
"vXmlDoc" (File path = "% TEMP%\test.xml")

"vXmlDoc"

File path = "% TEMP%\test.xml", File handle variable = "v2XmIDoc", Root element handle
variable = "v2XmlRoot", Password = ""

IF STRING %Vv2XmIDoc%==%_VStrEmpty%

Message SHOW "Information" : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2XmlIRoot" (What = CHILD_FIRST, Variable receiving result = \2ZElemChild1)
IF STRING %V2ElemChild1%==%_VStrEmpty%

Message SHOW "Information" : "Xml element not found." (other parameters: x = -100, y = -100, Window
title = Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF
"V2ElemChild1" (What = NAME, Variable receiving result = V2ElemName)
"V2ElemChild1" (What = TEXT, Variable receiving result = \V2ZElemText)

(Element handle variable = "%\2ElemChild1%", Attribute name = "al", Variable for result =
"V2A1AttributeValue")

(Element handle variable = "v2XmlIDoc", Path = "root\elem1", Element handle
variable = "V2ElemNavigated")

IF STRING %\V2ElemNavigated%==%_VStrEmpty%

Message SHOW "Information™ : "Xml file open failed." (other parameters: x = -100, y = -100, Window title =
Error, Buttons = OK, Timeout (seconds) = 0, Always on top = No).

ENDIF

"v2XmlIDoc"

Example (Plain Text):

<#>This macro shows how to work with Xml file content
<#>Create XML file with some simple content and sawe it to disk
<cmds>

<xml_file_create>(vXmlIDoc,vXmIRoot)
<xml_element_create>(vXmlIDoc,elem1,This is elem1 text,vElem1)
<xml_attribute_set>(vElem1,al,Hello)
<xml_element_set>(vXmlRoot,CHILD_FIRST,vElem1)
<xml_file_save>(vXmIDoc,"% TEMP%!\test.xml")
<xml_file_close>(vXmIDoc)<#>Open the XML file previously created and explore the contet
<xml_file_open>("%TEMP%\test.xml",v2XmIDoc,v2XmIRoot)
<if_str>("%v2XmIDoc%==%_VStrEmpty%")

<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_element_get>(v2XmlIRoot, CHILD_FIRST,v2ElemChild1)
<if_str>("%Vv2ElemChild1%==%_VvStrEmpty%")
<msg>(-100,-100,"Xml element not found.","Error",1,0,0,0)

<endif>

<xml_element_get>(V2ElemChild1,NAME,v2ElemName)
<xml_element_get>(V2ElemChild1, TEXT,v2ElemText)
<xml_attribute_get>(%v2ElemChild1%,al,2A1AttributeValue)
<xml_element_navigate>(v2XmlIDoc,"root\elem1",v2ElemNavigated)
<if_str>("%Vv2ElemNavigated%==%_VStrEmpty%")
<msg>(-100,-100,"Xml file open failed.","Error",1,0,0,0)

<endif>

<xml_file_close>(v2XmIDoc)

Commands & Syntax > Commands > Xml Parser >

Find Text - < xml_findtext >() ... [Pro]

<xml_findtext>(Start element handle,"Element name","Attribute name","Text to find",Variable for matching

elements, Variable for number of matching elements)

Available in: Professional edition

This command finds text in Xml document and provides list of elements where the text was found.

Parameter name Parameter description

1 Start element handle The Xml element handle to start searching from. This can be
typically the root element of the Xml document.

2 Element name The name of the element to search for the text in. For example,
"address" for the <address> element. If this field is empty then
all elements are searched. Wildcards such as * or ? can be
used.

3 Attribute name The name of the attribute to search for the text in. For example,
"style" for the <p style="text-align:right;> element. If this field is
empty then all attributes are searched. Wildcards such as * or
? can be used.

4 Text to find The text to find. The text is searched in both element text
values and attributes' values. Wildcards such as * or ? can be
used.

5 Variable for matching elements The name of variable (variable array) that receives handles of all
elements where the text was found. For example,
viFoundinElements.

6 Variable for number of matching elements The name of variable that receives the number of matching
elements. For example, viFoundinElementsCount.

Example (Macro Steps):

http://www.perfectkeyboard.com

2 Macro execution: ONLY COMMANDS
3
4 "http://www.macrotoolworks.com™ (Login name=) to file "c:\temp\macrotoolworks.html"
5
6 File Convert HTML to XML Conwvert HTML file c:\temp\macrotoolworks.html to XML file
c:\temp\macrotoolworks.xml
7 File path = "c:\temp\macrotoolworks.xml", File handle variable = "vA0O1", Root element handle
variable = "vAO1Root", Password = ""
8
° "Version*" (Element name=*, Attribute name=*, Variable for matching elements =
VElemsFound, Variable for number of matching elements = vElemsFoundCount)
10 IF NUMERIC %\ElemsFoundCount%>0
1 "%VvElemsFound[0]%" (What = TEXT, Variable receiving result = Wersion)
12 Message SHOW "Information” : "This is the latest version available: %wWersion%" (other parameters: x =
-100, y = -100, Window title = Macro Toolworks Version Info, Buttons = OK, Timeout (seconds) = 0,
Always on top = No).
13 Macro EXIT
14 ENDIF
15

Message SHOW "Error" : "Not able to retrieve the version information.” (other parameters: x = -100, y = -100,
Window title = , Buttons = OK, Timeout (seconds) = 0, Always on top = No).

Example (Plain Text):

<#>This macro shows how to use the "xml find element" command to retrieve the latest version fo the Macro Toolworks
from the web

<cmds>

<#> Download the Macro Toolworks page
<download>("c:\temp\macrotoolworks.html","http://www.macrotoolworks.com”,"","")
<#> Conwert it to Xml document
<file_html2xml>("c:\temp\macrotoolworks.html","c:\temp\macrotoolworks.xml")
<xml_file_open>("c:\temp\macrotoolworks.xml",vA01,vAO1Root)

<#> Find the version in the document

<xml_findtext>(vVAO1Root,"*","*" "Version*",vElemsFound,vElemsFoundCount)
<if_num>("%vElemsFoundCount%>0")

<xml_element_get>(%VElemsFound[0]%, TEXT,Wersion)

<msg>(-100,-100,"This is the latest version available:

%Wersion%","Macro Toolworks Version Info",1,0,0,0)

<exitmacro>

<endif>

<msg>(-100,-100,"Not able to retrieve the version information."”,"*,1,0,2,0)

581

How To Write Reliable Macros?

How To Write Reliable Macros

It often happens that a macro (macro that sends keystrokes or uses mouse events) user manually
creates or records works fine at the development time but starts being unreliable later (after user
reboots computer, installs new software etc.). This is not a problem of the macro program but it is
natural problem of Windows events timing. One simple example:

Let's say user wants to create macro that will do this: Start Notepad and type "Hello" init. This is quite
simple and user quickly creates this macro:

<lwinkey>r<lwinkey>notepad.exe<enter>Hello

The macro will do this: opens Run dialog box (<lwinkey>r<lwinkey>), types "Notepad.exe" in it, hits Enter
key to run Notepad and types "Hello" init. In 90% cases, It will work OK. But what if: (i) computer is
busy and Run dialog appears many seconds after all the keystrokes (Notepad.exe Hello) are already
sent out, (ii) a newly installed software user re-defines LWinKey+R hot key and Run dialog doesn't
appear at all. In such cases the macro fails doing what's expected without any notice to the user. The
macro language has commands that make it possible to write the same macro safe way:

<Iwinkey>r<lwinkey><cmds> <#> Open Run dialog

<waitfor>("WIN","ACT","Run",5,0) <#> Wait for the dialog to become active
<if_str>("_VvErr==NQ")
<keys>notepad.exe<newine><cmds> <#> No (timeout) error? Let the dialog to start Notepad then...
<else>
<msg>(-100,-100,"% _vQuoteChar%Run%_vQuoteChar% dialog faild to open.","Message",1)
<exitmacro>
<endif>

<waitfor>("WIN","ACT","Notepad",5,0) <#> Wait for Notepad to become active
<if_str>("_VvErr==NQ")
<keys>Hello<cmds> <#> No (timeout) error? Send keystrokes to Notepad then...
<else>
<msg>(-100,-100,"%_vQuoteChar%Notepad%_vQuoteChar% not activated.","Message",1)
<exitmacro>
<endif>

This code is much longer compare to the original macro, right. But the macro execution result is always
deterministic: Macro either executes OK or any failure is properly handled. This becomes important
especially for more complex macros that many users use.

http://www.perfectkeyboard.com

There are a few advises that should help you to write macros that are more reliable:

1. Some time an application the macro runs inis too slow to process all the input (keystrokes sent) in
time. In such case it can help to use <wx>(250) command that stops macro execution for 250ms and

gives the application time to process previous input before the macro continues.

2. If you write a macro that starts an application and then sends keystrokes into it, it is necessary to wait
until the application loads. You can use <waitfor>command right after the command you use to start
the application. The <waitfor> command waits until specified window appears on the screen or until it
times out (timeout sets _ VErr system variable and thus can be handled in the macro code).

3. If you write a macro that copies some selected data (text, bitmap, etc.) using clipboard, itis
recommended to use <clp_copyselected> command (this command waits until data are really copied to
clipboard before macro execution continues) or use <waitfor> command to wait until the data are
actually saved in the clipboard.

4. Replace all keystrokes and mouse actions by other commands if possible. This means that if
something can be done using a macro language command instead of using keyboard or mouse then
always use the command. For example, people often tend to open applications by simulating clicks on
desktop or Start menu. This has many drawbacks and it is always better to use <execappex>
command. We can simplify and make our sample above more robust using this command:

<cmds>

<execappex>("Notepad.exe","™,™,0,0)

<waitfor>("WIN","ACT","Notepad",5,0)

<if_str>("_vErr==NQ")
<keys>Hello<cmds>

<else>
<msg>(-100,-100,"%_vQuoteChar%Notepad%_vQuoteChar% not activated.","Message",1)
<exitmacro>

<endif>

Troubleshooting

If error is indicated in the main window upper right area then some triggers may not — 0O
work properly. Try this to fix it:

1. Restart Perfect Keyboard.
2. Reboot computer.
3. Check your anti-virus or anti-logger software and make sure that Perfect

Keyboard is not block. Eventually, add Perfect Keyboard to white list. "
4. Make sure that Perfect Keyboard has write access to folder were itis 10N "calc.e.
installed (write access to "Program Files" folder is sometimes set so that = infarmation
only processes with Administrator rights can write to the folder).
5. Reinstall Perfect Keyboard. Eventually install the program to new location - see #4 above.

http://www.perfectkeyboard.com

Index

A
AES Encryption, 57

B
Build-in Hotkeys, 77
C

Clipboard Macro, 17
Commands, 87
Creating New File, Opening File, 52

H

hot-key, 35
How To Write Reliable Macros?, 582
hyper-links, 17

I

Import and Export, 53
Installation, 56

K
Keystrokes Speed, 56

L
Lock Mode, 64

M

Macro Commands, 87, 17

Macro File, 50

Macro Language Basics, 88

Macro Language Variables, 91

Macro Properties, 40

Macro Syntax, 87

Macros, Creating Macros, 51

Make Changes In Multiple Macros, 80

P

Password Protection, 65
Printable HTML Output, 75

R

Run context menu command, 252
Run Macro, 43, 268

Run Macro From Other Program, 46
Run Macro In Separate Process, 45

S

Scope Of Macros, 38
Security, 63
Settings, 56

Sharing Macros, 81
shortcut, 35

Silent Install, 69
System Variables, 93

U
Unicode, 17

Vv
Variables, 91, 270

X
xml, 53

	Overview
	Support, Feedback, Privacy, Uninstall
	This Help Document Limitations
	Macro
	Content
	Text Macro
	Clipboard Macro
	General Macro
	Add Macro Command
	Macro Command Editor
	On Macro Error
	Recorded Macro

	Triggers
	Keyboard Triggers
	Clipboard
	Windows Service

	Macro Scope
	Macro Properties

	Run Macro
	By trigger
	From Main window, Tray, Run command, etc.
	From Other Program

	Macro group
	Macro File
	Macro File Tab
	Create/Open/Save
	Import / Export
	Read-only / Read-write
	File Backups

	Program Settings
	General
	Keyboard
	Startup Files

	Security
	Lock for Editing
	Password Protection
	File Data Security

	Installation
	Default Installation Folders
	Silent Install
	Install on Shared Drive

	Drag & Drop
	Log file
	HTML Export/Print Macros
	Generate Free Macro Player / EXE File
	Build-in Hotkeys
	Icons Overlay Images
	API's for External Programs/Scripts Interaction
	Http API
	Command Line Executable
	Windows Script (WScript)

	Commands & Syntax
	General Macro Syntax Basics
	Macro Command Syntax
	Macro Variables
	System Variables
	Expressions & Time Calculations
	Commands
	Free Text
	 - ... [Free]

	Clipboard
	SAVE - < clpsave >() ... [Pro]
	LOAD - < clpload >() ... [Pro]
	PASTE - < clppastetext >() ... [Free]
	CLEAR - < clpempty > ... [Pro]
	COPY - < clpput >() ... [Pro]
	COPY SELECTED - < clp_copyselected >() ... [Pro]
	Replace text - < clp_replace_text >() ... [Pro]

	Comments
	Comment Line - < # > ... [Free]
	Comment Block BEGIN { - < {# > ... [Pro]
	Comment Block END } - < }# > ... [Pro]

	Date & Time
	: DATE Insert or save to Variable - < date >() ... [Free]
	: TIME Insert or save to Variable - < time >() ... [Free]

	Display / Computer Screen
	GET PIXEL - < display_getpixel >() ... [Pro]
	CHANGE WALLPAPER - < display_changewallpaper >() ... [Pro]
	Image FIND on SCREEN - < display_findimage >() ... [Pro]
	Image CAPTURE from SCREEN - < display_captureimage >() ... [Pro]
	NOTIFICATION - < notify >() ... [Pro]

	Excel
	Read cell value - < excel_cell_get >() ... [Pro]
	Write value to cell - < excel_cell_set >() ... [Pro]
	Open/Create workbook - < excel_wb_open >() ... [Pro]
	Save - < excel_wb_save >() ... [Pro]
	Get worksheets - < excel_wb_sheets >() ... [Pro]
	Activate worksheet - < excel_wb_activatesheet >() ... [Pro]
	Close workbook - < excel_wb_close >() ... [Pro]

	External Scripts
	Embedded JAVA SCRIPT - < script_js > ... [Pro]
	Embedded VB SCRIPT - < script_vbs > ... [Pro]
	Embedded BASIC SCRIPT - < script_basic > ... [Pro]

	File Mainpulation
	OPEN - < fileopen >() ... [Free]
	COPY - < filecopy >() ... [Free]
	MOVE - < filemove >() ... [Pro]
	DELETE - < filedel >() ... [Free]
	CREATE - < filecreate >() ... [Pro]
	LOAD TEXT - < data_load >() ... [Pro]
	SAVE TEXT - < data_save >() ... [Pro]
	INFO - < fileinfo >() ... [Pro]
	ENUMERATE - < file_enum >() ... [Pro]
	PRINT - < file_print >() ... [Pro]
	RENAME - < filerename >() ... [Pro]
	ZIP - < zip_createfile >() ... [Pro]
	UNZIP - < zip_unzipfile >() ... [Pro]
	CREATE SELF-EXTRACTING ZIP - < zip_create_sfx >() ... [Pro]
	.INI WRITE - < ini_file_write >() ... [Pro]
	.INI READ - < ini_file_read >() ... [Pro]
	ENCRYPT/DECRYPT - < file_encryption >() ... [Pro]
	Parse Path - < file_path_parse >() ... [Pro]
	Convert HTML to XML - < file_html2xml >() ... [Pro]
	CSV Load - < csv_file_load >() ... [Pro]
	CSV Get Record Fields - < csv_get_record >() ... [Pro]
	SHORTCUT - < file_shortcut >() ... [Pro]

	Folder Manipulation
	OPEN - < diropen >() ... [Pro]
	CREATE - < dircreate >() ... [Free]
	DELETE - < dirdel >() ... [Free]
	COPY - < dircopy >() ... [Pro]
	MOVE - < dirmove >() ... [Pro]
	Recycle bin EMPTY - < recbinempty > ... [Pro]
	RENAME - < dirrename >() ... [Pro]
	ENCRYPT/DECRYPT - < dir_encryption >() ... [Pro]

	Keyboard
	Key EXTENDED - < extkey > ... [Pro]
	Insert NEW LINE - < newline > ... [Pro]
	BLOCK - < keys_block > ... [Pro]
	UNBLOCK - < keys_unblock > ... [Pro]
	Key UP - < key_up >() ... [Free]
	Key DOWN - < key_down >() ... [Free]
	ScrollLock ON - < ScrollLock_ON > ... [Pro]
	ScrollLock OFF - < ScrollLock_OFF > ... [Pro]
	CapsLock ON - < CapsLock_ON > ... [Pro]
	CapsLock OFF - < CapsLock_OFF > ... [Pro]
	NumLock ON - < NumLock_ON > ... [Pro]
	NumLock OFF - < NumLock_OFF > ... [Pro]
	SEND KEYSTROKES - < keystrokes >() ... [Pro]

	Keys
	 - < numpad4 > ... [Free]
	 - < numpad5 > ... [Free]
	 - < numpad6 > ... [Free]
	 - < numpad7 > ... [Free]
	 - < numpad8 > ... [Free]
	 - < numpad9 > ... [Free]
	 - < numpad* > ... [Free]
	 - < numpad+ > ... [Free]
	 - < numpad- > ... [Free]
	 - < numpad. > ... [Free]
	 - < numpad/ > ... [Free]
	 - < F1 > ... [Free]
	 - < F2 > ... [Free]
	 - < F3 > ... [Free]
	 - < F4 > ... [Free]
	 - < F5 > ... [Free]
	 - < F6 > ... [Free]
	 - < F7 > ... [Free]
	 - < F8 > ... [Free]
	 - < clear > ... [Free]
	 - < F9 > ... [Free]
	 - < F10 > ... [Free]
	 - < F11 > ... [Free]
	 - < F12 > ... [Free]
	 - < F13 > ... [Free]
	 - < F14 > ... [Free]
	 - < F15 > ... [Free]
	 - < F16 > ... [Free]
	 - < F17 > ... [Free]
	 - < F18 > ... [Free]
	 - < enter > ... [Free]
	 - < F19 > ... [Free]
	 - < F20 > ... [Free]
	 - < F21 > ... [Free]
	 - < F22 > ... [Free]
	 - < F23 > ... [Free]
	 - < F24 > ... [Free]
	 - < scroll > ... [Free]
	 - < numlock > ... [Free]
	 - < shift > ... [Free]
	 - < browser_back > ... [Free]
	 - < browser_forward > ... [Free]
	 - < browser_refresh > ... [Free]
	 - < browser_stop > ... [Free]
	 - < ctrl > ... [Free]
	 - < browser_search > ... [Free]
	 - < browser_favorites > ... [Free]
	 - < browser_home > ... [Free]
	 - < volume_mute > ... [Free]
	 - < volume_down > ... [Free]
	 - < volume_up > ... [Free]
	 - < media_nexttrack > ... [Free]
	 - < media_prevtrack > ... [Free]
	 - < media_stop > ... [Free]
	 - < media_play_pause > ... [Free]
	 - < alt > ... [Free]
	 - < launch_mail > ... [Free]
	 - < launch_media_select > ... [Free]
	 - < launch_app1 > ... [Free]
	 - < launch_app2 > ... [Free]
	 - < break > ... [Free]
	 - < capslock > ... [Free]
	 - < ctrld > ... [Free]
	 - < ctrlu > ... [Free]
	 - < altd > ... [Free]
	 - < altu > ... [Free]
	 - < altd_r > ... [Free]
	 - < altu_r > ... [Free]
	 - < shiftd > ... [Free]
	 - < shiftu > ... [Free]
	 - < winkeyd > ... [Free]
	 - < winkeyd_r > ... [Free]
	 - < winkeyu > ... [Free]
	 - < winkeyu_r > ... [Free]
	 - < esc > ... [Free]
	 - < space > ... [Free]
	 - < pgup > ... [Free]
	 - < pgdn > ... [Free]
	 - < end > ... [Free]
	 - < home > ... [Free]
	 - < left > ... [Free]
	 - < up > ... [Free]
	 - < right > ... [Free]
	 - < down > ... [Free]
	 - < select > ... [Free]
	 - < execkey > ... [Free]
	 - < printscreen > ... [Free]
	 - < insert > ... [Free]
	 - < delete > ... [Free]
	 - < back > ... [Free]
	 - < tab > ... [Free]
	 - < lwinkey > ... [Free]
	 - < rwinkey > ... [Free]
	 - < appskey > ... [Free]
	 - < numpad0 > ... [Free]
	 - < numpad1 > ... [Free]
	 - < numpad2 > ... [Free]
	 - < numpad3 > ... [Free]

	Macro Engine
	Macro CHANGE ICON - < me_changeicon >() ... [Pro]
	Macro execution: ONLY COMMANDS - < cmds > ... [Free]
	Macro execution: KEYS / FREE TEXT + COMMANDS - < keys > ... [Free]
	Macro ENABLE/DISABLE - < me_macroenable >() ... [Pro]
	Macro group ENABLE/DISABLE - < me_macroenable_group >() ... [Pro]
	Macro program EXIT - < me_exit >() ... [Pro]
	Macro execution: DISABLE "Shift+Esc" hotkey. - < me_stop_disable > ... [Pro]
	Macro execution: ENABLE "Shift+Esc" hotkey. - < me_stop_enable > ... [Pro]
	Macro execution STATUS WINDOW - < me_status_window >() ... [Pro]
	Macro execution: STATUS UPDATE - < me_status_set >() ... [Pro]
	Macro execution: Progress/Cancel SHOW - < me_macroprogress_show > ... [Pro]
	Macro execution: Progress/Cancel HIDE - < me_macroprogress_hide > ... [Pro]
	Macro File: Set dirty - < me_setfiledirty >() ... [Pro]

	Macro Flow Control
	PAUSE - < pause > ... [Pro]
	WAIT - < wx >() ... [Free]
	Loop BEGIN - < begloop >() ... [Pro]
	Loop END - < endloop > ... [Pro]
	IF - < if >() ... [Pro]
	ELSE - < else > ... [Free]
	ENDIF - < endif > ... [Free]
	Send KEYSTROKES as FAST as possible - < faston > ... [Pro]
	Send KEYSTROKES on SLOWEST rate - < fastoff > ... [Pro]
	Jump TARGET - < label >() ... [Pro]
	Jump TO - < goto >() ... [Pro]
	Macro EXIT - < exitmacro > ... [Pro]
	WAIT FOR - < waitfor >() ... [Free]
	IF WINDOW - < if_win >() ... [Free]
	IF FILE - < if_file >() ... [Pro]
	IF FOLDER - < if_dir >() ... [Pro]
	IF CLIPBOARD - < if_clp >() ... [Pro]
	IF NUMERIC - < if_num >() ... [Pro]
	IF STRING - < if_str >() ... [Pro]
	Debug BREAK POINT - < -dbp- > ... [Pro]
	If PROCESS - < if_process >() ... [Pro]
	Error CLEAR - < me_error_clear > ... [Pro]
	Error message DISABLED - < me_error_nodisplay > ... [Pro]
	Error message ENABLED - < me_error_display > ... [Pro]
	Macro EXIT (do not exit calling macro) - < exitmacro_soft > ... [Pro]
	If KEY / MOUSE BUTTON - < if_key >() ... [Pro]
	Procedure END - < proc_def_end > ... [Pro]
	Procedure BEGIN: - < proc_def_begin >() ... [Pro]
	Procedure CALL: - < proc_call >() ... [Pro]
	INCLUDE here macro text from - < -include- >() ... [Pro]
	Procedure EXIT - < proc_exit > ... [Pro]
	Repeat steps UNTIL - < for >() ... [Pro]
	Repeat steps END - < for_end > ... [Pro]
	Repeat steps BREAK - < for_break > ... [Pro]
	IF WINDOWS SERVICE - < if_winsvc >() ... [Pro]

	Mouse Commands
	MOVE - < mm >() ... [Free]
	BUTTON: - < mlbd > ... [Free]
	BUTTON: - < mlbu > ... [Free]
	BUTTON: - < mrbd > ... [Free]
	BUTTON: - < mrbu > ... [Free]
	BUTTON: - < mmbd > ... [Free]
	BUTTON: - < mmbu > ... [Free]
	COORDINATES - < mousemove_relative_win > ... [Free]
	COORDINATES - < mousemove_absolute > ... [Free]
	COORDINATES - < mousemove_relative_pos > ... [Free]
	COORDINATES - < mousemove_relative_definedwindow >() ... [Free]
	BUTTON: - < mx1bd > ... [Free]
	BUTTON: - < mx1bu > ... [Free]
	BUTTON: - < mx2bd > ... [Free]
	BUTTON: - < mx2bu > ... [Free]
	BLOCK - < mouse_block > ... [Pro]
	UNBLOCK - < mouse_unblock > ... [Pro]
	WHEEL FORWARD - < mwheel_f > ... [Free]
	WHEEL BACKWARD - < mwheel_b > ... [Free]
	DOUBLE-CLICK - < m2click > ... [Free]

	Networking/Web/E-mail
	Web OPEN PAGE - < wwwopen >() ... [Pro]
	Net drive CONNECT - < netcondrive >() ... [Pro]
	Net drive DISCONNECT - < netdiscondrive >() ... [Pro]
	ftp GET - < ftp_getfile >() ... [Pro]
	ftp PUT - < ftp_putfile >() ... [Pro]
	ftp DELETE - < ftp_delfile >() ... [Pro]
	ftp RENAME FILE - < ftp_renamefile >() ... [Pro]
	ftp CREATE DIRECTORY - < ftp_createdir >() ... [Pro]
	ftp DELETE DIRECTORY - < ftp_deldir >() ... [Pro]
	E-mail SEND - < email_send >() ... [Pro]
	Http DOWNLOAD - < download >() ... [Pro]
	ftp GET FILE SIZE - < ftp_filesize >() ... [Pro]
	ftp GET FILE MODIFICATION TIME - < ftp_filetime >() ... [Pro]
	E-mail POP3: GET LIST - < email_pop3_getlist >() ... [Pro]
	E-mail POP3: GET E-MAIL - < email_pop3_getmail >() ... [Pro]
	E-mail POP3: DELETE E-MAIL - < email_pop3_deletemail >() ... [Pro]
	E-mail POP3: CONNECT - < email_pop3_connect >() ... [Pro]
	E-mail POP3: DISCONNECT - < email_pop3_disconnect >() ... [Pro]
	E-mail SMTP SEND MAIL - < email_smtp_sendmail >() ... [Pro]
	Web FILL FORM - < www_fillform >() ... [Pro]
	HTML Page Links - < html_page_links >() ... [Pro]

	ODBC
	OPEN - < odbc_open >() ... [Pro]
	CLOSE - < odbc_close >() ... [Pro]
	Execute SQL - < odbc_exec_sql >() ... [Pro]
	Select SQL - < odbc_select >() ... [Pro]
	Select GET - < odbc_select_get >() ... [Pro]
	Select NEXT - < odbc_select_next >() ... [Pro]

	Run/Execute
	MACRO - < run >() ... [Pro]
	SELECTED MACRO - < listbox >() ... [Pro]
	.MCR FILE - < extmacro >() ... [Pro]
	APPLICATION - < execappex >() ... [Free]
	EXTERNAL SCRIPT FILE - < script_file >() ... [Pro]
	FILE CONTEXT MENU COMMAND - < run_ctxcommand >() ... [Pro]
	EXTERNAL COMMAND - < extcmd >() ... [Pro]

	System
	Screensaver START - < scrsavestart > ... [Pro]
	Set system TIME - < setsystime >() ... [Pro]
	Set system DATE - < setsysdate >() ... [Pro]
	Shutdown - < shutdown >() ... [Pro]
	Registry CREATE KEY - < reg_createkey >() ... [Pro]
	Registry DELETE KEY - < reg_deletekey >() ... [Pro]
	Registry DELETE VALUE - < reg_deletevalue >() ... [Pro]
	Registry ENUMERATE SUBKEYS - < reg_enumsubkeys >() ... [Pro]
	Registry ENUMERATE VALUES - < reg_enumvalues >() ... [Pro]
	Registry GET VALUE - < reg_getvalue >() ... [Pro]
	Registry SET VALUE - < reg_setvalue >() ... [Pro]
	Printer SET DEFAULT - < printer_setdefault >() ... [Pro]
	Speakers VOLUME - < multimedia >() ... [Pro]
	Process KILL - < process_kill >() ... [Pro]
	Screenasaver ENABLE - < scrsaver_enable > ... [Pro]
	Screenasaver DISABLE - < scrsaver_disable > ... [Pro]
	Process ENUMERATE - < process_enum >() ... [Pro]
	WINDOWS SERVICE - < winsvc >() ... [Pro]

	Text & Variable Manipulation
	SET - < varset >() ... [Pro]
	INSERT to active application - < varout >() ... [Pro]
	SAVE - < var_save >() ... [Pro]
	LOAD - < var_load >() ... [Pro]
	PARSE - < var_parse >() ... [Pro]
	OPERATION - < var_oper >() ... [Pro]
	Regular Expression Find - < regex_find >() ... [Pro]
	ENCRYPT/DECRYPT - < data_crypt >() ... [Pro]
	PARSE - < text_parse >() ... [Pro]

	User Interaction
	SOUND - < beep >() ... [Pro]
	Message SHOW - < msg >() ... [Free]
	Message CLOSE - < msgoff > ... [Free]
	E-mail COMPOSE - < email >() ... [Pro]
	Net drive WINDOW connect - < netcondrivedlg > ... [Pro]
	Net drive WINDOW disconnect - < netdiscondrivedlg > ... [Pro]
	Form OPEN - < form_show >() ... [Pro]
	Form FIELD - < form_item >() ... [Pro]
	Menu ADD ITEM - < menu_additem >() ... [Pro]
	Menu SHOW - < menu_show >() ... [Pro]
	Menu of MACROS - < macromenu >() ... [Pro]

	Window Manipulation
	ACTIVATE - < actwin >() ... [Free]
	MOVE - < winmove >() ... [Pro]
	RESIZE - < winresize >() ... [Pro]
	Minimize All - < winminall > ... [Pro]
	CLOSE - < winclose >() ... [Pro]
	CHANGE STATE - < winstate >() ... [Pro]
	ENUMERATE - < win_enumerate >() ... [Pro]
	INFO - < wininfo >() ... [Pro]
	Image FIND in WINDOW - < win_findimage >() ... [Pro]
	Image CAPTURE from WINDOW - < win_captureimage >() ... [Pro]
	APPLICATION - < actapp >() ... [Free]

	Xml Parser
	File Open - < xml_file_open >() ... [Pro]
	File Save - < xml_file_save >() ... [Pro]
	Element Get - < xml_element_get >() ... [Pro]
	Attribute Get - < xml_attribute_get >() ... [Pro]
	File Close - < xml_file_close >() ... [Pro]
	Navigate to Element - < xml_element_navigate >() ... [Pro]
	File Create - < xml_file_create >() ... [Pro]
	Element Set - < xml_element_set >() ... [Pro]
	Attribute Set - < xml_attribute_set >() ... [Pro]
	Element Create - < xml_element_create >() ... [Pro]
	Find Text - < xml_findtext >() ... [Pro]

	How To Write Reliable Macros?
	Troubleshooting

